欢迎来到天天文库
浏览记录
ID:48037490
大小:2.59 MB
页数:37页
时间:2020-01-11
《第21章-一元二次方程复习课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、一元二次方程复习一元二次方程一元二次方程的定义一元二次方程的解法一元二次方程的应用方程两边都是整式ax²+bx+c=0(a0)本章知识结构只含有一个未知数求知数的最高次数是2配方法求根公式法直接开平方法因式分解法二次项系数为1,而一次项系数为偶数明辨是非判断下列方程是不是一元二次方程,若不是一元二次方程,请说明理由?1、(x-1)2=42、x2-2x=84、x2=y+15、x3-2x2=16、ax2+bx+c=13、x2+=1×√√×××第4页22、若方程是关于x的一元二次方程,则m的值为。3.若x=2是方程x2+ax-8=0的解,则a=;24、写出一个根为5的一
2、元二次方程。1、若是关于x的一元二次方程则m。≠-2填一填第6页用适当的方法解下列方程因式分解法:1.用因式分解法的条件是:方程左边能够分解为两个因式的积,而右边等于0的方程;2.形如:ax2+bx=o(即常数C=0).因式分解法的一般步骤:一移-----方程的右边=0;二分-----方程的左边因式分解;三化-----方程化为两个一元一次方程;四解-----写出方程两个解;直接开平方法:1.用开平方法的条件是:缺少一次项的一元二次方程,用开平方法比较方便;2.形如:ax2+c=o(即没有一次项).a(x+m)2=k配方法:用配方法的条件是:适应于任何一个一元二次方程
3、,但是在没有特别要求的情况下,除了形如x2+2kx+c=0用配方法外,一般不用;(即二次项系数为1,一次项系数是偶数。)配方法的一般步骤:一化----把二次项系数化为1(方程的两边同时除以二次项系数a)二移----把常数项移到方程的右边;三配----把方程的左边配成一个完全平方式;四开----利用开平方法求出原方程的两个解.★一化、二移、三配、四开、五解.公式法:用公式法的条件是:适应于任何一个一元二次方程,先将方程化为一般形式,再求出b2-4ac的值,b2-4ac≥0则方程有实数根,b2-4ac<0则方程无实数根;方程根的情况与b2-4ac的值的关系:当b2-4a
4、c>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根.公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)选择适当的方法解下列方程(4)x(2x-7)=2x(5)x²-5x=-4(6)2x²-3x-1=0(7)(x-1)(x+1)=x(8)x(2x+5)=2(2x+5)(9)3(x-2)2-9=0解方程:第15页已知方程x2+kx=-3的一个根是-1,则k=,另一根为_
5、_____4x=-36若a为方程的解,则的值为已知m为非负整数,且关于x的一元二次方程:有两个实数根,求m的值。说明:当二次项系数也含有待定的字母时,要注意二次项系数不能为0,还要注意题目中待定字母的取值范围.试一试第19页第20页第21页第22页第23页当m为何值时,方程认真做一做(1)有两个相等实根;(2)有两个不等实根;(3)有实根;(4)无实数根;(5)只有一个实数根;(6)有两个实数根。m-1≠0且Δ=0m-1≠0且Δ>0△≥0或者m-1=0△<0且m-1≠0m-1=0△≥0且m-1≠01.审清题意,弄清题中的已知量和未知量找出题中的等量关系。2.恰当地设
6、出未知数,用未知数的代数式表示未知量。3.根据题中的等量关系列出方程。4.解方程得出方程的解。5.检验看方程的解是否符合题意。6.作答注意单位。列方程解应用题的解题过程两个数的差等于4,积等于45,求这两个数.数字问题:一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.这次会议到会的人数是多少?握手问题:面积类应用题:如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?BADC墙如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,
7、水渠的宽度都相等.水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过2天的传染后,这个地区一共将会有多少人患甲型H1N1流感?解:设每天平均一个人传染了x人。解得:(舍去)答:每天平均一个人传染了2人。即病毒传染问题:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?主干支干支干……小分支小分支……小
此文档下载收益归作者所有