欢迎来到天天文库
浏览记录
ID:47974848
大小:229.00 KB
页数:5页
时间:2019-11-10
《2019-2020年高中数学 2.4.1抛物线及其标准方程课时作业 新人教A版选修2-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高中数学2.4.1抛物线及其标准方程课时作业新人教A版选修2-1课时目标 1.掌握抛物线的定义、四种不同标准形式的抛物线方程、准线、焦点坐标及对应的几何图形.2.会利用定义求抛物线方程.1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离________的点的轨迹叫做抛物线,点F叫做抛物线的________,直线l叫做抛物线的________.2.抛物线的标准方程(1)方程y2=±2px,x2=±2py(p>0)叫做抛物线的________方程.(2)抛物线y2=2px(p>0)的焦点坐标是________,准线方程
2、是__________,开口方向_______.(3)抛物线y2=-2px(p>0)的焦点坐标是____________,准线方程是__________,开口方向________.(4)抛物线x2=2py(p>0)的焦点坐标是________,准线方程是__________,开口方向________.(5)抛物线x2=-2py(p>0)的焦点坐标是______,准线方程是________,开口方向________.一、选择题1.抛物线y2=ax(a≠0)的焦点到其准线的距离是( )A.B.C.
3、a
4、D.-2.已知抛物线的顶点在原点,对称轴为x轴,焦点
5、在双曲线-=1上,则抛物线方程为( )A.y2=8xB.y2=4xC.y2=2xD.y2=±8x3.抛物线y2=2px(p>0)上一点M到焦点的距离是a(a>),则点M的横坐标是( )A.a+B.a-C.a+pD.a-p4.过点M(2,4)作与抛物线y2=8x只有一个公共点的直线l有( )A.0条B.1条C.2条D.3条5.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1B.x=-1C.x=2D.x=-26.设抛物线y2=2x的焦点为F,过点M(
6、,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,
7、BF
8、=2,则△BCF与△ACF的面积之比等于( )A.B.C.D.题 号123456答 案二、填空题7.抛物线x2+12y=0的准线方程是__________.8.若动点P在y=2x2+1上,则点P与点Q(0,-1)连线中点的轨迹方程是__________.9.已知抛物线x2=y+1上一定点A(-1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是______________.三、解答题10.已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于
9、5,求抛物线的方程和m的值,并写出抛物线的焦点坐标和准线方程.11.求焦点在x轴上且截直线2x-y+1=0所得弦长为的抛物线的标准方程.能力提升12.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为( )A.B.1C.2D.413.已知抛物线y2=2px(p>0)上的一点M到定点A和焦点F的距离之和的最小值等于5,求抛物线的方程.1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y轴上的抛物线
10、的标准方程x2=2py通常又可以写成y=ax2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax2来求其焦点和准线时,必须先化成标准形式.§2.4 抛物线2.4.1 抛物线及其标准方程知识梳理1.相等 焦点 准线2.(1)标准 (2)(,0) x=- 向右(3)(-,0) x= 向左 (4)(0,) y=- 向上 (5)(0,-) y= 向下作业设计1.B [因为y2=ax,所以p=,即该抛物线的焦点到其准线的距离为,故选B.]2.D [由题意知抛物线的焦点为双曲线-=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为
11、y2=8x或y2=-8x.]3.B [由抛物线的定义知:点M到焦点的距离a等于点M到抛物线的准线x=-的距离,所以点M的横坐标即点M到y轴的距离为a-.]4.C [容易发现点M(2,4)在抛物线y2=8x上,这样l过M点且与x轴平行时,或者l在M点处与抛物线相切时,l与抛物线有一个公共点,故选C.]5.B [∵y2=2px的焦点坐标为(,0),∴过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px得y2=2py+p2,即y2-2py-p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2p,∴=p=2,∴抛物线的方程为y2=
12、4x,其准线方程为x=-1.]6.A [如图所示,设过点M(,0)的直线方程为y=k(x-),
此文档下载收益归作者所有