2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案

2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案

ID:47964068

大小:1.15 MB

页数:28页

时间:2019-11-10

2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案_第1页
2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案_第2页
2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案_第3页
2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案_第4页
2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案_第5页
资源描述:

《2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019年高考数学大一轮复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)求空间角和距离学案最新考纲考情考向分析1.能用向量方法解决直线与直线、直线与平面、平面与平面所成角的计算问题.2.了解向量方法在研究立体几何问题中的应用.本节是高考中的必考内容,涉及用向量法计算空间异面直线所成角、直线和平面所成角、二面角及空间距离等内容,考查热点是空间角的求解.题型以解答题为主,要求有较强的运算能力,广泛应用函数与方程的思想、转化与化归思想.l1与l2所成的角θa与b的夹角β范围[0,π]求法cosθ=cosβ=2.直线与平面所成角的求法设直线l的方向向量为a,平面α的法向量为n,直线

2、l与平面α所成的角为θ,a与n的夹角为β,则sinθ=

3、cosβ

4、=.3.求二面角的大小(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足

5、cosθ

6、=

7、cos〈n1,n2〉

8、,二面角的平面角大小是向量n1与n2的夹角(或其补角).知识拓展利用空间向量求距离(供选用)(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则

9、AB

10、=

11、

12、=.(2)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到

13、平面α的距离为

14、

15、=.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )(3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是[0,π].( √ )(5)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是π-θ.( × )题组二 教材改编2.[P104T2]已知两平面的法向量分别为m=(0,1,0),n=(0,1

16、,1),则两平面所成的二面角为(  )A.45°B.135°C.45°或135°D.90°答案 C解析 cos〈m,n〉===,即〈m,n〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.[P117A组T4(2)]如图,正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为2,则AC1与侧面ABB1A1所成的角为______.答案 解析 以A为原点,以,(AE⊥AB),所在直线分别为x轴,y轴,z轴(如图)建立空间直角坐标系,设D为A1B1的中点,则A(0,0,0),C1(1,,2),D(1,0,2),∴=(1,,2),=(1,0,2).∠

17、C1AD为AC1与平面ABB1A1所成的角,cos∠C1AD===,又∵∠C1AD∈,∴∠C1AD=.题组三 易错自纠4.在直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为(  )A.B.C.D.答案 C解析 以点C为坐标原点,CA,CB,CC1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.设直三棱柱的棱长为2,则可得A(2,0,0),B(0,2,0),M(1,1,2),N(1,0,2),∴=(1,-1,2),=(-1,0,2).∴cos〈,〉====.5.已知向量m,n分别是直线l

18、和平面α的方向向量和法向量,若cos〈m,n〉=-,则l与α所成的角为________.答案 30°解析 设l与α所成角为θ,∵cos〈m,n〉=-,∴sinθ=

19、cos〈m,n〉

20、=,∵0°≤θ≤90°,∴θ=30°.6.过正方形ABCD的顶点A作线段PA⊥平面ABCD,若AB=PA,则平面ABP与平面CDP所成的角为______.答案 45°解析 如图,以点A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,设AB=PA=1,则A(0,0,0),D(0,1,0),P(0,0,1),由题意,知AD⊥平面PAB,设E为PD的中点,连接AE,则AE⊥PD,又

21、CD⊥平面PAD,∴CD⊥AE,从而AE⊥平面PCD.∴=(0,1,0),=分别是平面PAB,平面PCD的法向量,且〈,〉=45°.故平面PAB与平面PCD所成的角为45°.题型一 求异面直线所成的角典例如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.(1)证明 如图所

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。