高中数学第二章函数2.3函数的应用Ⅰ学习导航学案

高中数学第二章函数2.3函数的应用Ⅰ学习导航学案

ID:47923709

大小:186.50 KB

页数:7页

时间:2019-11-01

高中数学第二章函数2.3函数的应用Ⅰ学习导航学案_第1页
高中数学第二章函数2.3函数的应用Ⅰ学习导航学案_第2页
高中数学第二章函数2.3函数的应用Ⅰ学习导航学案_第3页
高中数学第二章函数2.3函数的应用Ⅰ学习导航学案_第4页
高中数学第二章函数2.3函数的应用Ⅰ学习导航学案_第5页
资源描述:

《高中数学第二章函数2.3函数的应用Ⅰ学习导航学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3函数的应用(Ⅰ)自主整理1.直线型的函数模型我们学过的正比例函数、一次函数等都是直线型的,它们在每个区间的变化率都一样.解题时常设为:常函数型:y=C(C∈R,C为常数),正比例型:y=kx(k≠0),一次函数型:y=kx+b(k≠0).当k>0时后两者都是增长型函数,k的值越大增速越快,但最后趋势是远离坐标轴,变化率不变.如在市场经济大潮中,普遍存在着最优化问题——最佳投资、最小成本等,常常归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,如果一个问题中有两个变量,且这两个变量对应法则是一次的关系,则可以用一次函数模型来解决.2.抛物线型的模型(二

2、次函数模型)二次函数常设为y=ax2+bx+c(a,b,c为常数,a≠0)形式,其图象是抛物线,顶点坐标是(,),对称轴是直线x=,a>0时,抛物线在对称轴左边单调下降,在对称轴右边单调递增,在x=处有最小值,经常需要用配方法求最值.现在人们注重对普遍存在的诸如造价成本最低,而产出、利润最大、风险决策、最优化等问题的研究,透过实际问题的背景,抓住本质,挖掘隐含的数量关系,可抽象成二次函数的最值模型.又如解决投物、射击、喷泉灌溉等物体运动的轨迹有某种规律,或者变量的变化具有二次函数关系的实际问题,可以通过直角坐标系由实际问题建立抛物线的数学模型,利用图象的性质可得到解答.高

3、手笔记1.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.2.二次函数的最值模型是高考中常考问题,对于二次函数利用配方法求最值是重要方法和手段.3.一般来说,若题中已给出数学模型,只要解模即可,较常用的方法是用待定系数法解模.4.一个分段函数类型的应用问题,注意判断自变量在分段函数的哪一段取值范围内是这个题的解题关键.5.实际问题解决步骤口诀:(1)收集数据,画图提出假设;(2)依托图表,理顺数量关系;(3)抓住关键,建立函数模型;(4)精确计算,求解数学问题;(5)回到实际,

4、检验问题结果.名师解惑1.应用题中列出函数的解析式一般有几种方法?7剖析:(1)待定系数法:已知条件中已给出了含参数的函数关系式,或可确定函数类别,此种情形下应用待定系数法求出函数表达式中的相关参数(未知系数)的值,就可以得到确定的函数式.(2)归纳法:先让自变量x取一些特殊值,计算出相应的函数值,从中发现规律,再推广到一般情形,从而得到函数表达式.(3)方程法:用x表示自变量及其他相关的量,根据问题的实际意义,运用掌握的数学、物理等方面的知识,列出函数关系式,此种方法形式上和列方程解应用题相仿,故称为方程法,实际上函数关系式就是含x、y的二元方程.2.解决函数应用题的关

5、键点是什么?建立数学模型是解决数学问题的主要方法,数学建模一般分为识模、析模、建模、解模、验模五个步骤.我们应如何走好这5个步骤呢?剖析:(1)解决函数应用题的关键有两点:一是实际问题数学化,即在理解的基础上,通过列表、画图,引入变量,建立直角坐标系等手段把实际问题翻译成数学问题,把文字语言翻译成数学符号语言.二是对得到的函数模型进行解答,得出数学问题的解,要注重数学能力的培养.(2)识模就是把应用问题的外部信息和自己已有的内部经验相对照,初步判断问题解决的方向;析模就是精读问题,做到“咬文嚼字”,抓住关键字词,化简转换问题,注意已知量,发现未知量,挖掘隐含量;建模是通过

6、数学符号化,把问题转化为数学模型的过程;解模时我们可以借助计算机等数学工具对所建模型求解;由于应用问题本身的繁杂性、开放性,根据自己理解所建立的模型也有局限性,最后要对模型的解检验,或取或舍,或重新修正模型,直到满意为止.有些问题还需要我们利用信息技术收集数据、绘图、计算、拟合函数.讲练互动【例题1】用汽船拖载重量都是a且满载货物的小船若干只,在两港之间来回运送货物.若每次拖4只小船,则一天可来回16次,若每次拖7只小船,则一天可来回10次,且每天来回次数是每次所拖小船只数的一次函数.若每天每次所拖小船只数不变,每天来回多少次,每次拖几只小船,才能使运货总重量达到最大?每

7、天最大运货总重量是多少?分析:运货总重量与每天小船来回的次数、每次所拖小船只数以及小船所载重量有关.由于小船载重量为定值,所以具体求出每天来回的次数与每次所拖小船只数的关系式是解决问题的关键.解:设汽船每次拖x只小船,每天来回y次,每天的运货量为w.由题意设y=kx+b(k≠0),则有解得k=-2,b=24.∴y=-2x+24.于是w=axy=ax(-2x+24)=-2a(x-6)2+72a.当x=6时,wmax=72a.此时y=12.因此每天来回12次,每次拖6只小船时能使运货重量最大,最大为72a.绿色通道此题所研究的函数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。