欢迎来到天天文库
浏览记录
ID:47920167
大小:53.00 KB
页数:1页
时间:2019-10-31
《高中数学04-三角函数19》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第十九教时教材:两角和与差的正弦、余弦、正切的综合练习⑵目的:通过例题的讲解,增强学生利用公式解决具体问题的灵活性。过程:一、公式的应用例一在斜三角形△ABC中,求证:tanA+tanB+tanC=tanA•tanB•tanC证一:在△ABC中,∵A+B+C=p∴A+B=p-C从而有tan(A+B)=tan(p-C)即:∴tanA+tanB=-tanC+tanAtanBtanC即:tanA+tanB+tanC=tanA•tanB•tanC证二:左边=tan(A+B)(1-tanAtanB)+tanC=tan(p-C)(1-tanAtanB)+tanC=-ta
2、nC+tanAtanBtanC+tanC=tanAtanBtanC=右边例二求(1+tan1°)(1+tan2°)(1+tan3°)……(1+tan44°)解:(1+tan1°)(1+tan44°)=1+tan1°+tan44°+tan1°tan44°=1+tan45°(1-tan1°tan44°)+tan1°tan44°=2同理:(1+tan2°)(1+tan43°)=2(1+tan3°)(1+tan42°)=2……∴原式=222例三《教学与测试》P113例一(略)口答例四《教学与测试》P113例二已知tanq和是方程的两个根,证明:p-q+1=0证:由韦
3、达定理:tanq+=-p,tanq•=q∴∴p-q+1=0例五《教学与测试》例三已知tana=,tan(-b)=(tanatanb+m)又a,b都是钝角,求a+b的值解:∵两式作差,得:tana+tanb=(1-tanatanb即:∴又:a,b都是钝角∴p
此文档下载收益归作者所有