2018高考数学(理)热点题型 数列

2018高考数学(理)热点题型 数列

ID:47686224

大小:89.50 KB

页数:7页

时间:2019-10-22

2018高考数学(理)热点题型 数列_第1页
2018高考数学(理)热点题型 数列_第2页
2018高考数学(理)热点题型 数列_第3页
2018高考数学(理)热点题型 数列_第4页
2018高考数学(理)热点题型 数列_第5页
资源描述:

《2018高考数学(理)热点题型 数列》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{an}的通项公式;(2)设Tn=Sn-(n∈N*),求数列{Tn}的最大项的值与最小项的值.解 (1)设等比数列{an}的公比为q,因为S3+a3,S5+a5,S4+a4成等差数列,所以S5+a

2、5-S3-a3=S4+a4-S5-a5,即4a5=a3,于是q2==.又{an}不是递减数列且a1=,所以q=-.故等比数列{an}的通项公式为an=×=(-1)n-1·.(2)由(1)得Sn=1-=当n为奇数时,Sn随n的增大而减小,所以1Sn-≥S2-=-=-.综上,对于n∈N*,总有-≤Sn-≤.所以数列{Tn}最大项的值为,最小项的值为-.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等

3、差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{an}是公差不为零的等差数列,其前n项和为Sn,满足S5-2a2=25,且a1,a4,a13恰为等比数列{bn}的前三项.(1)求数列{an},{bn}的通项公式;(2)设Tn是数列的前n项和,是否存在k∈N*,使得等式1-2Tk=成立?若存在,求出k的值;若不存在,请说明理由.解 (1)设等差数列{an}的公差为d(d≠0),∴解得a1=3,d=2,∴an=2n+1.∵b1=a1=3,b2=a4=9,∴等比数列

4、{bn}的公比q=3,∴bn=3n.(2)不存在.理由如下:∵==,∴Tn==,∴1-2Tk=+(k∈N*),易知数列为单调递减数列,∴<1-2Tk≤,又=∈,∴不存在k∈N*,使得等式1-2Tk=成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,

5、已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an},{bn}的通项公式;(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.(1)解 由题意有即解得或故或(2)解 由d>1,知an=2n-1,bn=2n-1,故cn=,于是Tn=1+++++…+,①Tn=+++++…+.②①-②可得Tn=2+++…+-=3-,故Tn=6-.【类题通法】用错位相减法解决数列求和的模板第一步:(判断结构)若数列{an·bn}是由等差数列{an}与等比数列{bn}(公比q)的对应项之积构成的,则可用此法求和.第二步

6、:(乘公比)设{an·bn}的前n项和为Tn,然后两边同乘以q.第三步:(错位相减)乘以公比q后,向后错开一位,使含有qk(k∈N*)的项对应,然后两边同时作差.第四步:(求和)将作差后的结果求和,从而表示出Tn.【对点训练】设数列{an}的前n项和为Sn,已知a1=1,a2=2,且an+2=3Sn-Sn+1+3,n∈N*.(1)证明:an+2=3an;(2)求S2n.(1)证明 由条件,对任意n∈N*,有an+2=3Sn-Sn+1+3,因而对任意n∈N*,n≥2,有an+1=3Sn-1-Sn+3.两式相减,得an+

7、2-an+1=3an-an+1,即an+2=3an,n≥2.又a1=1,a2=2,所以a3=3S1-S2+3=3a1-(a1+a2)+3=3a1,故对一切n∈N*,an+2=3an.(2)解 由(1)知,an≠0,所以=3.于是数列{a2n-1}是首项a1=1,公比为3的等比数列;数列{a2n}是首项a2=2,公比为3的等比数列.因此a2n-1=3n-1,a2n=2×3n-1.于是S2n=a1+a2+…+a2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)=(1+3+…+3n-1)+2(1+3+…+3n

8、-1)=3(1+3+…+3n-1)=(3n-1).热点三 数列的综合应用热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】设等差数列{an}的公差为d,点(an,bn)在函数f(x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。