欢迎来到天天文库
浏览记录
ID:47609654
大小:872.48 KB
页数:20页
时间:2019-10-01
《河北省张家口市、沧州市2019届高三数学3月模拟联考试题(A)文(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河北省张家口市、沧州市2019届高三数学3月模拟联考试题(A)文(含解析)一、选择题(本大题共12小题,共60.0分)1.已知集合,集合,则()A.B.C.D.【答案】B【解析】【分析】先由且求出,再和集合求交集即可得出结果.【详解】因为,又所以.故选B【点睛】本题主要考查集合的交集,熟记概念即可求解,属于基础题型.2.复数,则()A.B.C.D.【答案】A【解析】【分析】由复数模的运算法则可知,据此确定复数的模即可.【详解】由复数模的运算法则可得:.本题选择A选项.【点睛】本题主要考查复数的模的运算法则及其
2、应用,属于基础题.3.随着时代的发展,移动通讯技术的进步,各种智能手机不断更新换代,给人们的生活带来了巨大的便利,但与此同时,长时间低头看手机,对人的身体如颈椎、眼睛等会造成一定的损害,“低头族”由此而来.为了了解某群体中“低头族”的比例,现从该群体包括老、中、青三个年龄段的人中采取分层抽样的方法抽取人进行调查,已知这人里老、中、青三个年龄段的分配比例如图所示,则这个群体里老年人人数为()A.B.C.D.【答案】B【解析】【分析】由题意可知老年人所占的比例为,据此求解老年人的人数即可.【详解】由题意结合分层抽
3、样的定义可知,这个群体里老年人人数为.本题选择B选项.【点睛】本题主要考查统计图表的识别与应用,属于基础题.4.已知直线和平面,则是与异面的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】由题意,若直线b不在平面内,则b与相交或,充分性不成立,反之,若与异面,一定有直线b不在平面内,据此即可得到正确的结论.【详解】由题意,若直线b不在平面内,则b与相交或,不一定有与异面,反之,若与异面,一定有直线b不在平面内,即是与异面的必要不充分条件.本题选择B选项.【
4、点睛】本题主要考查线面关系有关命题及其应用,充分必要条件的判定等知识,意在考查学生的转化能力和计算求解能力.5.已知=(-1,1),
5、
6、=,
7、+2
8、=,则向量与的夹角为( )A.B.C.D.【答案】D【解析】【分析】由题中条件先求出向量与的数量积,再由即可求出结果.【详解】因为,所以,又,所以,因此,所以,因此向量与的夹角为.故选D【点睛】本题主要考查向量的夹角公式,根据向量的数量积运算,即可求解,属于基础题型.6.若变量满足则使取得最小值的最优解为()A.B.C.D.【答案】C【解析】【分析】首先绘制不等
9、式组表示的平面区域如图所示,然后结合目标函数的几何意义确定使取得最小值的最优解即可【详解】绘制不等式组表示的平面区域如图所示,目标函数即:,其中z取得最小值时,其几何意义表示直线系在y轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点B处取得最小值,联立直线方程:,可得点的坐标为:.本题选择C选项.【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截
10、距最小时,z值最大.7.已知等比数列的公比为且成等差数列,若,则为()A.B.C.D.【答案】A【解析】【分析】先由等比数列的公比为且成等差数列,求出首项,得出通项公式,进而可得出结果.【详解】因为等比数列的公比为且成等差数列,所以,即,解得,所以,所以,又,因此,所以,解得.故选A【点睛】本题主要考查等比数列,熟记等比数列的通项公式即可,属于基础题型.8.已知函数,且满足,则的取值范围为()A.或B.C.D.【答案】B【解析】【分析】由函数的解析式易知函数为偶函数,且函数在区间上单调递减,据此脱去f符号求解
11、不等式的解集即可.【详解】由函数的解析式易知函数为偶函数,且当时,,故函数在区间上单调递减,结合函数为偶函数可知不等式即,结合偶函数的单调性可得不等式,求解绝对值不等式可得的取值范围为.本题选择B选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(
12、x
13、).9.为双曲线的左焦点,圆与双曲线的两条渐进线在第一、二象限分别交于两点,若,则双曲线的离心率为()A.B.C.D.【答
14、案】C【解析】【分析】不妨设,其中,由斜率公式可得,由直线垂直的充分必要条件可知:,据此可得,然后结合双曲线的离心率公式求解离心率即可.【详解】不妨设,其中,由于,故,由于双曲线的渐近线方程为,结合直线垂直的充分必要条件可知:,据此可得:,整理可得,据此可知:,,双曲线的离心率.本题选择C选项.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①
此文档下载收益归作者所有