二重积分计算中的积分限的确定1

二重积分计算中的积分限的确定1

ID:47601145

大小:202.01 KB

页数:6页

时间:2019-09-25

二重积分计算中的积分限的确定1_第1页
二重积分计算中的积分限的确定1_第2页
二重积分计算中的积分限的确定1_第3页
二重积分计算中的积分限的确定1_第4页
二重积分计算中的积分限的确定1_第5页
资源描述:

《二重积分计算中的积分限的确定1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二重积分计算中积分限的确定赵娟刘敏宁群(宿州学院数学系安徽宿州234000)摘要:二重积分计算中积分限的确定对于初学者是一个重点更是一个难点.本文旨在介绍一种二重积分计算中确定积分限的简单易行的方法.关键词:二重积分累次积分积分限积分次序引言:高等数学学习过程中,二重积分计算是个难点。原因在于将二重积分化为累次积分时,对于积分限的确定学生难以掌握。本人结合自己的教学实践和自己的学习体会总结出一个口诀,发现在教学过程中效果不错可以很好地帮助学生解决这一难题。1.高等数学中计算二重积分的方法在高等数学课本中,在直角坐标系下计算二重积分的步骤为

2、:。(1)画出积分区域;(2)确定积分区域是否为X-型或Y-型区域,如既不是X-型也不是Y-型区域,则要将积分区域化成几个X-型和Y-型区域,并用不等式组表示每个X-型和Y-型区域;(3)用公式化二重积分为累次积分;(4)计算累次积分的值。在教学的过程中我发现学生对于此种方法掌握得很不好,尤其是在第二步中,确定积分区域从而确定累次积分的积分限是一个薄弱环节.下面就本人在教学中的体会谈谈在这方面的一点心得.2.教学过程中总结的方法本人的心得可用下面的口诀概括:后积先定限,限内画条线,先交下限取,后交上限见.下面简单解释一下该口诀,然后以具体

3、的例题加以说明.在将二重积分转化为累次积分的时候,对于两个积分变量必然会有个先后顺序,这就要求对后积分的那个变量,我们要根据积分区域的图形,用夹住区域的平行于同一坐标轴的两条直线确定其上下限(确定的上下限应为常数).确定了这个变量的上下限以后,我们在这两条平行直线之间画一条和上下限平行的直线,该直线沿着坐标轴的正方向穿过区域该直线与区域的边界至多有两个交点,先交的即为另一个积分变量的积分下限,后交的即为其积分上限.3.例题解析例1计算,其中是由直线所围成的区域.解:作出积分区域的图形作者简介:赵娟(1980-),女,汉族,安徽蚌埠,宿州学

4、院数学系,教师,助教,学士,模糊数学在经济中的应用安徽师范大学项目:2006年省级精品课程《高等数学》(序号111)省教育厅自然科学资助项目(2006KJ257B)在这个例题中我们既可以选择先对.若我们选择先对来.从积分区域图可以看出.然后我们在直线和直线之间画一条和这两条直线平行的直线,易见这条线只要画在和内,则其左边总是和直线相交,从而的积分下限即为,而右边总是和直线相交,从而的积分上限为2.这样就完成了二重积分到累次积分的转化:xx=2y=x图(2)O12yy=1xyy=1x=2y=xO122图(1)1若我们选择先对积分也是可以的。

5、先把后积分的变量的积分限根据积分区域确定下来。如图(2)从积分区域图易见最小取到1最大取到2。然后在和之间画一条和这两条直线平行的直线,则其下边总是和相交,而上面总是相交。从而这个积分变量的下限为1上限为。于是该二重积分也可转化为下面的二次积分来计算:例2计算,其中是由抛物线和直线所围成的区域。解首先作出积分区域图在本题中若我们选择先对积分,则根据积分区域图(如图3)和上面介绍的口诀可以知道该二重积分化为二次积分为:y2=xy=x-2-1yy=x-2图(3)y241xOOxy2=x图(4)在本题中若我们选择先对积分,则根据积分区域图(如图

6、4)我们先把的上下限定下来,由图可见最小取到0最大取到4。但在和这两条直线之间画它们平行的直线的时候,发现在这条直线的左右两侧情况有所不同:在的左侧所画直线上下均与抛物线相交,而右侧所画直线下面是与直线相交,上面是与抛物线相交,从而本题若选择先对后对积分则需要将积分区域从直线处分割成两半来处理,即用积分区域可加性得:显然这样计算起来要比上一种方法复杂得多!故当积分区域属这种情况时一般来讲我们会选择先对后对积分。还有的情况恰与这种情况相反,那么我们为了简便起见一般会选择先对后对积分。比如:例3:计算,其中是由抛物线和直线所围成的区域。解首先

7、作出积分区域图在本题中若我们仍然选择先对积分,则根据积分区域图(如图5)易知:积分变量的最小取到0最大取到4。但是在这两条直线之间画平行于它们的直线的时候会发现在直线的上下两侧所画直线与区域图的交点所在的曲线有所不同:在直线的下侧,所画直线左右两端均与抛物线相交。在直线的上侧,所画直线左端与直线相交右端与抛物线相交。于是二重积分转化为累次积分进行计算时要将积分区域沿直线分割成两块来处理:2-1xO图(6)y=x+2y=x2yx21Oy=x+2y=x2y-1图(5)41下面我们选择先对积分看是否可以起到简化计算的效果:从积分区域图(如图6)

8、可以看到积分变量最小取到-1最大取到2,在直线和之间画平行于它们的直线时易见该直线上端总是与直线相交下端总是与抛物线相交,从而二重积分化为累次积分如下:以上两个例题是根据积分区域选择积分次序以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。