资源描述:
《数学中考阶梯训练11》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、中考阶梯训练11(满分120分,时间50分钟)—、选择题(本大题共6小题,每小题5分,共30分)1.若加与3互为相反数,贝!
2、
3、加一3
4、的值为()108A.0B.6C._D亍2.一列数:1,—2,3,—4,5,—6,7,…,将这列数排成如图K11-1所示的形式.按照此规律排下去,那么第10行从左边数第5个数等于()第1行1第2行3第3行-45-6第4行7-89-10第5行11-1213-1415图K11-1A.-50B.51C.55D.-563.某科技小组制作了一个机器人,它能根据指令要求进行直走和旋转,某一指令规定:机器人先向前行走2米,然后
5、左转45。.若机器人反复执行这一指令,则从出发到第一次冋到原处,机器人共走了()A.14米B.15米C.16米D.17米4.将五个边长都为2cm的正方形按如图K11-2所示摆放,点儿B,C,Q分别是四个正方形的中心,则图中四块阴影而积的和为()A.2cm2B.4cm2C.6cm2D.8cm2图Kll・2图Kll-3图KI1-445.如图Kll-3,函数与函数的图象相交于B两点,过力,3两点分别作y轴的垂线,垂足分别为点C,D则四边形ACBD的面积为()A.2B.4C.6D.86.如图Kll-4,OO是以原点为圆心,迈为半径的圆,点尸是直线y=-
6、x+6±.的一点,过点尸作OO的一条切线P0,点0为切点,则切线长P0的最小值为()A.3B.4C.6-^2D.3y[2-i二、填空题(本大题4小题,每小题5分,共20分)1.计算:(一加5)2=.2.某区青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表.年龄组12岁13岁14岁15岁参赛人数5201213长为4,图K11-6B则全体参赛选手年龄的中位数是岁.9.如图Kll-5,OO的半径为4,PC切OO于点C,交肓径力3延长线于点若CP10.如图Kll-6,和△C£Q均为等边三角形,AC=BC,4C丄BC.若BE=迄,则CD=.三
7、、解答题(一)(本大题2小题,每小题11分,共22分)11.先化简,再求值:(占-其中X是不等式组{兀一3(兀一2)22,匕17x-2x+[4x-2<5x-l的一个整数解.12.在一个不透明的盒子里,装有四个分别标有数字1,2,34的小球,它们的形状、大小、质地等完全相同.小明先从盒了里随机取出一个小球,记下数字为兀;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为只(1)用树状图或列表法表示岀(x,丿)的所有可能出现的结果;4(2)求小明、小华各取一次小球所确定的点⑴力落在反比例函数y=^的图象上的概率.四、解答题(二)(本大题3小题,
8、每小题16分,共48分)10.已知点P是直角三角形斜边M上一动点(不与力,〃重合),分别过力,3向直线CP作垂线,垂足分别为E,F.(1)当点P为力3的中点时,如图K11-7,连接4F,BE.证明:四边形AEBF是平行四边图K11-8(2)当点卩不是/〃的中点,如图Kll・8,0是MB的中点.证明:△0EF为等腰三角形.图K11-711.如图Kll・9,是0O的直径,直线经过点3,点C在右半圆上移动(与点力,B不重合),过点C作CQ丄垂足为点D连接C4,CB,ZCBM=ZBAC,点F在射线BMA1移动(点M在点B的右边),在移动过程中保持OF/
9、/AC.(1)求证:为OO的切线.(2)若CD,FO的延长线相交于点E,判断是否存在点E,使得点E恰好在0O上?若存在,求ZE的度数;若不存在,请说明理由;⑶连接M交CD于点G,设比=焉,试问:点C在移动的过程中,k的值是否会发生变化?若变化,请说明理由;若不变,请直接写小M的值.BFM图K11-9接BC,AC.(1)求AB和OC的长;(2)点E从点/出发,沿x轴向点B运动(点E与点3不重合),过点E作直线/平行BC,交/C于点D设M的长为加,的面积为s,求s关于刃的函数关系式,并写出白变量血的取值范围;(3)在⑵的条件下,连接CE,求厶CDE
10、积的最人值;此时,求出以点E为圆心,与BC相切的圆的面积.(结果保留兀)图K11-10中考阶梯训练111.B2.A3.C4.B5.D6.B7.w6/?2&13.59.8—2兀10,^3-1.,…—x-1—(x+2)(x_2)(x_])2兀一3(兀—2)$2,①=_(x+2)(x_l)=—x2—x+2.〔4兀一2<5x—1,②由①,得xW2.由②,得x>-l.所以不等式组的解集为一1GW2,其整数解为0,1,2.由于兀不能取1和2,所以当x=0吋,原式=—0—0+2=2.12.解:(1)列表如下12341(1,1)(1,2)(1,3)(1,4)2
11、(2,1)(2,2)(2,3)(2,4)3(3,1)(32)(3,3)(3,4)4(4,1)(4,2)(4,3)(44)4⑵共有16种情形,其小落在图