数学教学案2课时导数的应用--单调性与极值

数学教学案2课时导数的应用--单调性与极值

ID:47154522

大小:291.50 KB

页数:7页

时间:2019-08-13

数学教学案2课时导数的应用--单调性与极值_第1页
数学教学案2课时导数的应用--单调性与极值_第2页
数学教学案2课时导数的应用--单调性与极值_第3页
数学教学案2课时导数的应用--单调性与极值_第4页
数学教学案2课时导数的应用--单调性与极值_第5页
资源描述:

《数学教学案2课时导数的应用--单调性与极值》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、1.理解导数在研究函数的单调性和极值中的作用;2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。【重点难点】①利用导数求函数的极值;②利用导数求函数的单调区间;③利用导数求函数的最值;④利用导数证明函数的单调

2、性;⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题;⑦导数与解析几何相综合的问题。【高考要求】B级【基础过关】1.函数的单调性⑴函数y=在某个区间内可导,若>0,则为;若<0,则为.(逆命题不成立)(2)如果在某个区间内恒有,则.注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.(3)求可导函数单调区间的一般步骤和方法:①确定函数的;②求,令,解此方程,求出它在定义区间内的一切实根;③把函数的间断点(即的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数的定义区间分成若干个小区间;④确定在各小开区间内的,根据的符号判

3、定函数在各个相应小开区间内的增减性.2.可导函数的极值⑴极值的概念设函数在点附近有定义,且对附近的所有点都有(或),则称为函数的一个极大(小)值.称为极大(小)值点.⑵求可导函数极值的步骤:①求导数;②求方程=0的;③检验在方程=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y=在这个根处取得;如果在根的左侧附近为负,右侧为正,那么函数y=在这个根处取得.3.函数的最大值与最小值:⑴设y=是定义在区间[a,b]上的函数,y=在(a,b)内有导数,则函数y=在[a,b]上有最大值与最小值;但在开区间内有最大值与最小值.(2)求最值可分两步进行:①求

4、y=在(a,b)内的值;②将y=的各值与、比较,其中最大的一个为最大值,最小的一个为最小值.(3)若函数y=在[a,b]上单调递增,则为函数的,为函数的;若函数y=在[a,b]上单调递减,则为函数的,为函数的.【典型例题】例1.已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.解:=ex-a.(1)若a≤0,=ex-a≥0恒成立,即f(x)在R上递增.若a>0,ex-a≥0,∴ex≥

5、a,x≥lna.∴f(x)的单调递增区间为(lna,+∞).(2)∵f(x)在R内单调递增,∴≥0在R上恒成立.∴ex-a≥0,即a≤ex在R上恒成立.∴a≤(ex)min,又∵ex>0,∴a≤0.(3)方法一由题意知ex-a≤0在(-∞,0]上恒成立.∴a≥ex在(-∞,0]上恒成立.∵ex在(-∞,0]上为增函数.∴x=0时,ex最大为1.∴a≥1.同理可知ex-a≥0在[0,+∞)上恒成立.∴a≤ex在[0,+∞)上恒成立.∴a≤1,∴a=1.方法二由题意知,x=0为f(x)的极小值点.∴=0,即e0-a=0,∴a=1.变式训练1.已知函数f(x)=x3-a

6、x-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.(1)解由已知=3x2-a,∵f(x)在(-∞,+∞)上是单调增函数,∴=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.∵3x2≥0,∴只需a≤0,又a=0时,=3x2≥0,故f(x)=x3-1在R上是增函数,则a≤0.(2)解由=3x2-a≤0在(-1,1)上恒成立,得a≥3x2,x∈(-1,1)恒成立.

7、∵-1

8、=1时,切

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。