高中三角函数公式典型例题大全

高中三角函数公式典型例题大全

ID:47053480

大小:305.00 KB

页数:7页

时间:2019-07-10

高中三角函数公式典型例题大全_第1页
高中三角函数公式典型例题大全_第2页
高中三角函数公式典型例题大全_第3页
高中三角函数公式典型例题大全_第4页
高中三角函数公式典型例题大全_第5页
资源描述:

《高中三角函数公式典型例题大全》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、景海教育高中三角函数公式大全以及典型例题2009年07月12日星期日19:27三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A=Sin2A=2SinA•CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式si

2、n3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb=2coscoscosa-cosb=-2sinsintana+tanb=景海教育积化和差sinasinb=-[cos(a+b)-cos(a-b)]cosacosb=[cos(a+b)+cos(a-b)]sinacosb=[s

3、in(a+b)+sin(a-b)]cosasinb=[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sinacos(-a)=cosasin(-a)=cosacos(-a)=sinasin(+a)=cosacos(+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=万能公式sina=cosa=tana=其它公式a•sina+b•cosa=×sin(a+c)[其中tanc=]a•sin(a)-b•cos(a

4、)=×cos(a-c)[其中tan(c)=]1+sin(a)=(sin+cos)21-sin(a)=(sin-cos)2其他非重点三角函数csc(a)=sec(a)=公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=co

5、tα公式三:任意角α与-α的三角函数值之间的关系:景海教育sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=

6、-cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)=cosαcos(+α)=-sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=cosαcos(-α)=sinαtan(-α)=cotαcot(-α)=tanαsin(+α)=-cosαcos(+α)=sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=-cosαcos(-α)=-sinαtan(-α)=cotαcot(-α)=tanα(以上k∈Z)正弦定理a/sinA=b/sinB=c/sin

7、C=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}三角函数       积化和差和差化积公式记不住就自己推,用两角和差的正余弦:3.三角形中的一些结论:(不要求记忆)    (1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)    (3)cosA+cosB+cosC=

8、4sin(A/2)·sin(B/2)·sin(C/2)+1    景海教育(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC    (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1...........................已知sinα=msin(α+2β),

9、m

10、<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。