欢迎来到天天文库
浏览记录
ID:47019417
大小:214.00 KB
页数:10页
时间:2019-05-04
《2015年普通高等学校招生全国统一考试(北京卷)(文科)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2015年普通高等学校招生全国统一考试(北京卷)(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x
2、-53、-34、-35、-56、-37、-58、2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=23.下列函数中为偶函数的是( )A.y=x2sinxB.y=x2cosxC.y=9、lnx10、D.y=2-x4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.执行如图所示的程序框图,输出的k值为( )A.3B.4C.5D.66.设a,b是非零向量,“a·b=11、a12、13、14、b15、”是“a∥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B.C.D.28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升第Ⅱ卷二、填空题(本大题共6小题,每小16、题5分,共30分.把答案填在题中横线上)9.复数i(1+i)的实部为________.10.2-3,3,log25三个数中最大的数是________.11.在△ABC中,a=3,b=,∠A=,则∠B=________.12.已知(2,0)是双曲线x2-=1(b>0)的一个焦点,则b=________.13.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、17、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知函数f(x)=sinx-2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最小值.16.(本小题满分13分)已知等差数列{an}满足a1+a2=10,a4-a3=2.(1)求{an}的通项公式;(2)设等比数列{bn}满足b18、2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(本小题满分14分)如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证19、:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.19.(本小题满分13分)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(本小题满分14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.参考答案与详解本试20、卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.
3、-34、-35、-56、-37、-58、2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=23.下列函数中为偶函数的是( )A.y=x2sinxB.y=x2cosxC.y=9、lnx10、D.y=2-x4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.执行如图所示的程序框图,输出的k值为( )A.3B.4C.5D.66.设a,b是非零向量,“a·b=11、a12、13、14、b15、”是“a∥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B.C.D.28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升第Ⅱ卷二、填空题(本大题共6小题,每小16、题5分,共30分.把答案填在题中横线上)9.复数i(1+i)的实部为________.10.2-3,3,log25三个数中最大的数是________.11.在△ABC中,a=3,b=,∠A=,则∠B=________.12.已知(2,0)是双曲线x2-=1(b>0)的一个焦点,则b=________.13.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、17、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知函数f(x)=sinx-2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最小值.16.(本小题满分13分)已知等差数列{an}满足a1+a2=10,a4-a3=2.(1)求{an}的通项公式;(2)设等比数列{bn}满足b18、2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(本小题满分14分)如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证19、:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.19.(本小题满分13分)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(本小题满分14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.参考答案与详解本试20、卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.
4、-35、-56、-37、-58、2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=23.下列函数中为偶函数的是( )A.y=x2sinxB.y=x2cosxC.y=9、lnx10、D.y=2-x4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.执行如图所示的程序框图,输出的k值为( )A.3B.4C.5D.66.设a,b是非零向量,“a·b=11、a12、13、14、b15、”是“a∥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B.C.D.28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升第Ⅱ卷二、填空题(本大题共6小题,每小16、题5分,共30分.把答案填在题中横线上)9.复数i(1+i)的实部为________.10.2-3,3,log25三个数中最大的数是________.11.在△ABC中,a=3,b=,∠A=,则∠B=________.12.已知(2,0)是双曲线x2-=1(b>0)的一个焦点,则b=________.13.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、17、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知函数f(x)=sinx-2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最小值.16.(本小题满分13分)已知等差数列{an}满足a1+a2=10,a4-a3=2.(1)求{an}的通项公式;(2)设等比数列{bn}满足b18、2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(本小题满分14分)如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证19、:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.19.(本小题满分13分)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(本小题满分14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.参考答案与详解本试20、卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.
5、-56、-37、-58、2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=23.下列函数中为偶函数的是( )A.y=x2sinxB.y=x2cosxC.y=9、lnx10、D.y=2-x4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.执行如图所示的程序框图,输出的k值为( )A.3B.4C.5D.66.设a,b是非零向量,“a·b=11、a12、13、14、b15、”是“a∥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B.C.D.28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升第Ⅱ卷二、填空题(本大题共6小题,每小16、题5分,共30分.把答案填在题中横线上)9.复数i(1+i)的实部为________.10.2-3,3,log25三个数中最大的数是________.11.在△ABC中,a=3,b=,∠A=,则∠B=________.12.已知(2,0)是双曲线x2-=1(b>0)的一个焦点,则b=________.13.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、17、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知函数f(x)=sinx-2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最小值.16.(本小题满分13分)已知等差数列{an}满足a1+a2=10,a4-a3=2.(1)求{an}的通项公式;(2)设等比数列{bn}满足b18、2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(本小题满分14分)如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证19、:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.19.(本小题满分13分)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(本小题满分14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.参考答案与详解本试20、卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.
6、-37、-58、2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=23.下列函数中为偶函数的是( )A.y=x2sinxB.y=x2cosxC.y=9、lnx10、D.y=2-x4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.执行如图所示的程序框图,输出的k值为( )A.3B.4C.5D.66.设a,b是非零向量,“a·b=11、a12、13、14、b15、”是“a∥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B.C.D.28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升第Ⅱ卷二、填空题(本大题共6小题,每小16、题5分,共30分.把答案填在题中横线上)9.复数i(1+i)的实部为________.10.2-3,3,log25三个数中最大的数是________.11.在△ABC中,a=3,b=,∠A=,则∠B=________.12.已知(2,0)是双曲线x2-=1(b>0)的一个焦点,则b=________.13.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、17、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知函数f(x)=sinx-2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最小值.16.(本小题满分13分)已知等差数列{an}满足a1+a2=10,a4-a3=2.(1)求{an}的通项公式;(2)设等比数列{bn}满足b18、2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(本小题满分14分)如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证19、:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.19.(本小题满分13分)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(本小题满分14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.参考答案与详解本试20、卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.
7、-58、2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=23.下列函数中为偶函数的是( )A.y=x2sinxB.y=x2cosxC.y=9、lnx10、D.y=2-x4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.执行如图所示的程序框图,输出的k值为( )A.3B.4C.5D.66.设a,b是非零向量,“a·b=11、a12、13、14、b15、”是“a∥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B.C.D.28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升第Ⅱ卷二、填空题(本大题共6小题,每小16、题5分,共30分.把答案填在题中横线上)9.复数i(1+i)的实部为________.10.2-3,3,log25三个数中最大的数是________.11.在△ABC中,a=3,b=,∠A=,则∠B=________.12.已知(2,0)是双曲线x2-=1(b>0)的一个焦点,则b=________.13.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、17、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知函数f(x)=sinx-2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最小值.16.(本小题满分13分)已知等差数列{an}满足a1+a2=10,a4-a3=2.(1)求{an}的通项公式;(2)设等比数列{bn}满足b18、2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(本小题满分14分)如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证19、:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.19.(本小题满分13分)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(本小题满分14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.参考答案与详解本试20、卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.
8、2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=23.下列函数中为偶函数的是( )A.y=x2sinxB.y=x2cosxC.y=
9、lnx
10、D.y=2-x4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.执行如图所示的程序框图,输出的k值为( )A.3B.4C.5D.66.设a,b是非零向量,“a·b=
11、a
12、
13、
14、b
15、”是“a∥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B.C.D.28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升第Ⅱ卷二、填空题(本大题共6小题,每小
16、题5分,共30分.把答案填在题中横线上)9.复数i(1+i)的实部为________.10.2-3,3,log25三个数中最大的数是________.11.在△ABC中,a=3,b=,∠A=,则∠B=________.12.已知(2,0)是双曲线x2-=1(b>0)的一个焦点,则b=________.13.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、
17、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知函数f(x)=sinx-2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最小值.16.(本小题满分13分)已知等差数列{an}满足a1+a2=10,a4-a3=2.(1)求{an}的通项公式;(2)设等比数列{bn}满足b
18、2=a3,b3=a7,问:b6与数列{an}的第几项相等?17.(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(本小题满分14分)如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证
19、:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.19.(本小题满分13分)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(本小题满分14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.参考答案与详解本试
20、卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.
此文档下载收益归作者所有