欢迎来到天天文库
浏览记录
ID:46882948
大小:3.05 MB
页数:17页
时间:2019-11-28
《 浙江省杭州市第二中学2018届高三仿真考数学试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018年杭州二中高三仿真考数学试卷第Ⅰ卷(选择题部分,共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则Cu(A∩B)=()A.B.C.D.【答案】B【解析】分析:解一元二次不等式求得集合B,之后应用交集中元素的特征,求得集合,再根据全集R,求出,从而求得结果.详解:由可得,所以,从而可求得,所以,故选B.点睛:该题考查的是有关集合的运算的问题,注意把握交集和补集的概念,即可求得结果,属于基础题目.2.各项都是正数的等比数列中,,,成等差数列,则的值为()A
2、.B.C.D.或【答案】B详解:设的公比为q(),根据题意可知,得,解得,而,故选B.点睛:该题考查的是数列的有关问题,涉及到的知识点有三个数成等差数列的条件,等比数列的性质等,注意题中的隐含条件.3.函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为()A.f(x)=sin(2x+)B.f(x)=sin(2x-)C.f(x)=sin(2x+)D.f(x)=sin(2x-)【答案】D【解析】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,
3、得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.点睛:该题考查的是有关三角函数的图像的性质,涉及到的知识点有函数的周期,函数图像的平移变换,函数图像的对称性等,在解题的过程中,需要注意公式的正确使用,以及左右平移时对应的原则,还有就是图像的对称性的应用,结合题中所给的范围求得结果.4.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3B.6C.9D.
4、12【答案】C【解析】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.5.一个几何体的三视图如图所示,则这个几何体的体积为()A.B.C.D.【答案】D【解析】该立方体是由一个四棱锥和半个圆柱组合而成的,所以体积为,故选D。6.在中,“”是“为钝角三角形”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条
5、件【答案】D【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和
6、角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.7.已知,则()A.B.C.D.【答案】D【解析】分析:根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.详解:因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.点睛:该题考查的是利用指数函数的单调性比较大小的问题,在解题的过程中,要时刻关注指数幂中底数的取值范围和指数的大小关系,从而求得结果.8.如图,已知直线与抛物线相交于A,B两点,且A、B两
7、点在抛物线准线上的投影分别是M,N,若,则的值是()A.B.C.D.2【答案】C【解析】分析:直线恒过点,由此推导出,根据题意,求出点A的坐标,从而能求出k的值.详解:设抛物线C:是准线为,直线恒过点,过分别作于,于,由,所以点为的中点,连结,则,所以,点A的横坐标为,所以点的坐标为,把代入直线,解得,故答案是.点睛:该题考查的是直线与椭圆相交的有关问题,在解题的过程中,需要充分利用题的条件,灵活运用抛物线的定义,能够发现直线所满足的条件,联立求得点的坐标,代入求得k的值,即得结果.9.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时
8、从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则()A.
此文档下载收益归作者所有