欢迎来到天天文库
浏览记录
ID:46882269
大小:3.02 MB
页数:16页
时间:2019-11-28
《 宁夏银川一中2018届高三第四次模拟考试数学(文)试卷(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018年普通高等学校招生全国统一考试文科数学(银川一中第四次模拟考试)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,集合,集合,若,则A.1B.2C.4D.8【答案】A【解析】【分析】由题设有,因此,故可求出.【详解】因为,故,所以,故,又,因此,故选A.【点睛】本题考察集合的元素性质,属于基础题,解题时注意元素的确定性、互异性、唯一性的应用.2.若复数,复数,则A.B.C.D.【答案】B【解析】【分析】先计算,再求.【详解】,故,故选B.【点睛
2、】本题考察复数的概念与运算,涉及到乘法运算和复数的模,为基础题.3.已知命题:,,则:A.,B.,C.,D.,【答案】C【解析】【分析】全称命题的否定是存在性命题,按规则写出其否定即可.【详解】命题的否定为:.故选C.【点睛】一般地,全称命题“”的否定为“”,而存在性命题“”的否定为“”.4.设,,,则A.B.C.D.【答案】A【解析】试题分析:因为,所以,应选A.考点:指数函数对数函数幂函数的图象和性质及运用.5.函数的大致图象为A.B.C.D.【答案】C【解析】由,得,解得,.故函数的图象与轴的两个交点坐标为,
3、,排除B、D.又,排除A,故选C.6.地的天气预报显示,地在今后的三天中,每一天有强浓雾的概率为,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生0—9之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:则这三天中至少有两天有强浓雾的概率近似为A.B.C.D.【答案】D【解析】由随机数表可知,满足题意的数据为978,479,588,779,据此可知,这三天中至少有两天有强浓雾的概率近
4、似为选D.7.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是A.B.C.D.【答案】D【解析】【分析】此算法为循环结构,共循环7次,故①处填判断语句,②填取半计算,③填循环控制变量的变化方式.【详解】算法为循环结构,循环7次,每次对长度折半计算,也就是,因此②填,又①填判断语句,需填,③填.故选D.【点睛】本题考察算法中的
5、循环结构,属于基础题.此类问题,注意循环的次数,如本题7天后木棍的长度为尺,故需执行7次,由此判断出循环所需次数.8.已知实数,满足,则的最大值为A.1B.2C.4D.8【答案】B【解析】【分析】画出可行域,算出可行域中的点到的距离的最大值即可.【详解】可行域如图所示:又表示可行域中的点与之间连线的长度,其最大值为与之间连线的长度,其大小为,故选B.【点睛】在二次一次不等式组的条件下考虑二元目标函数的最值问题,往往需要利用线性规划来处理,注意寻找二元目标函数的几何意义,常见的二元目标函数有:(1),表示;与定点的连
6、线的斜率;(2),表示与定点之间的距离.9.某四棱锥的三视图如图所示,其中正视图是斜边为等腰直角三角形,侧视图和俯视图均为两个边长为1的正方形,则该四棱锥的高为A.B.1C.D.【答案】A【解析】几何体是是如图放置的四棱锥,是正方体中切除一个三棱柱,再切除一个三棱锥所得到的几何体,该正方体的棱长为1,高为到平面的距离,此距离为,故选A.10.将函数y=sin(2x+φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为A.B.C.0D.【答案】B【解析】试题分析:由题意得关于轴对称,所以的一个
7、可能取值为,选B.考点:三角函数图像变换【思路点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x而言.函数y=Asin(ωx+φ),x∈R是奇函数⇔φ=kπ(k∈Z);函数y=Asin(ωx+φ),x∈R是偶函数⇔φ=kπ+(k∈Z);函数y=Acos(ωx+φ),x∈R是奇函数⇔φ=kπ+(k∈Z);函数y=Acos(ωx+φ),x∈R是偶函数⇔φ=kπ(k∈Z);视频11.已知数列的首项,满足,则A.B.C.D.
8、【答案】C【解析】【分析】由,两式相加可得,利用“累加法”可得结果.【详解】,,两式相加有;且,,,故答案为C.【点睛】由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、等比数列);(2)累加法,相邻两项的差成等求和的数列可利用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法
此文档下载收益归作者所有