椭圆及其标准方程-夏良中

椭圆及其标准方程-夏良中

ID:46797388

大小:1.69 MB

页数:23页

时间:2019-11-27

椭圆及其标准方程-夏良中_第1页
椭圆及其标准方程-夏良中_第2页
椭圆及其标准方程-夏良中_第3页
椭圆及其标准方程-夏良中_第4页
椭圆及其标准方程-夏良中_第5页
资源描述:

《椭圆及其标准方程-夏良中》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2008年9月25日晚21时10分04秒,“神舟七号”载人飞船在酒泉卫星发射中心发射升空,实现了太空行走,标志着我国航天事业又上了一个新台阶。生活中的椭圆(一)认识椭圆课题:椭圆及其标准方程(一)张渚高级中学:夏良中(二)动手试验(1)取一条一定长的细绳(2)把它的两端用图钉固定在纸板上(3)当绳长大于两图钉之间的距离时,用铅笔尖把绳子拉直,使笔尖在纸板上慢慢移动,画出一个图形结合实验以及“圆的定义”,思考讨论一下应该如何定义椭圆?反思:F1F2M(三)概念透析F1F2M平面内到两个定点F1、F2的距离的和等于常数(大于

2、F

3、1F2

4、)的点的轨迹叫椭圆。这两个定点F1、F2叫做椭圆的焦点两焦点之间的距离叫做焦距。1、椭圆的定义如果设轨迹上任一点M到两定点F1、F2的距离和为常数2a,两定点之间的距离为2c,则椭圆定义还可以用集合语言表示为:P={M

5、

6、MF1

7、+

8、MF2

9、=2a(2a>2c)}.(1)平面曲线(2)到两定点F1,F2的距离等于定长(3)定长﹥

10、F1F2

11、反思:椭圆上的点要满足怎样的几何条件?平面内到两个定点F1、F2的距离的和等于常数(大于

12、F1F2

13、)的点的轨迹叫椭圆。这两个定点F1、F2叫做椭圆的焦点两焦点之间的距离叫做焦距。

14、绳长=绳长<注:定长所成曲线是椭圆定长所成曲线是线段定长无法构成图形OXYF1F2M2.椭圆方程的建立步骤一:建立直角坐标系,步骤二:设动点坐标步骤三:列方程步骤四:化简方程求曲线方程的步骤:解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).设M(x,y)是椭圆上任意一点,椭圆的焦距2c(c>0),M与F1和F2的距离的和等于正常数2a(2a>2c),则F1、F2的坐标分别是(c,0)、(c,0).(想一想:下面怎样化简?)由椭圆的定义,代入坐标OxyMF1F2(四)方程推导则

15、方程可化为观察左图,你能从中找出表示c、a的线段吗?即a2-c2有什么几何意义?()焦点在y轴:焦点在x轴:2、椭圆的标准方程:1oFyx2FM12yoFFMxF1(-c,0)、F2(c,0)F1(0,-c)、F2(0,c)注意理解以下几点:①在椭圆的两种标准方程中,都有的要求;②在椭圆的两种标准方程中,由于,所以可以根据分母的大小来判定焦点在哪一个坐标轴上;③椭圆的三个参数之间的关系是,其中大小不确定.分母哪个大,焦点就在哪个坐标轴上,反之亦然。注意:(五)尝试应用1、下列方程哪些表示的是椭圆,如果是,判断它的焦点在哪个坐

16、标轴上?变式一:将上题焦点改为(0,-4)、(0,4),结果如何?变式二:将上题改为两个焦点的距离为8,椭圆上一点P到两焦点的距离和等于10,结果如何?已知两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和等于10;(五)尝试应用2、写出适合下列条件的椭圆的标准方程当焦点在X轴时,方程为:当焦点在Y轴时,方程为:例1、写出适合下列条件的椭圆的标准方程两个焦点的坐标是(0,-2)和(0,2),并且经过点P解:因为椭圆的焦点在y轴上,设它的标准方程为∵c=2,且c2=a2-b2∴4=a2-b2……①又∵椭

17、圆经过点P∴……②联立①②可求得:∴椭圆的标准方程为(法一)xyF1F2P(六)典例分析(法二)因为椭圆的焦点在y轴上,所以设它的标准方程为由椭圆的定义知,所以所求椭圆的标准方程为求椭圆的标准方程的步骤:(1)首先要判断焦点位置,设出标准方程(先定位)(2)根据椭圆定义或待定系数法求a,b(后定量)课堂练习1.写出适合下列条件的椭圆的标准方程:(1)a=4,b=3,焦点在x轴;(2)a=5,c=2,焦点在y轴上.2.椭圆的焦距是,焦点坐标为;的弦,则的周长为.若CD为过左焦点分母哪个大,焦点就在哪个轴上标准方程相同点焦点位置

18、的判断不同点图形焦点坐标探究定义a、b、c的关系xyF1F2MOxyF1F2MOa2-c2=b2(a>b>0)(七)谈谈收获P={M

19、

20、MF1

21、+

22、MF2

23、=2a(2a>2c)}.谢谢!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。