椭圆及其标准方程

椭圆及其标准方程

ID:1973540

大小:430.81 KB

页数:7页

时间:2017-11-14

椭圆及其标准方程_第1页
椭圆及其标准方程_第2页
椭圆及其标准方程_第3页
椭圆及其标准方程_第4页
椭圆及其标准方程_第5页
资源描述:

《椭圆及其标准方程》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、§2.2.1椭圆及其标准方程(1)学习目标1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义;3.掌握椭圆的标准方程.学习过程一、课前准备(预习教材理P38~P40,文P32~P34找出疑惑之处)复习1:过两点,的直线方程复习2:方程表示以为圆心,为半径的二、新课导学※学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的保持不变,即笔

2、尖等于常数.新知1:我们把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.反思:若将常数记为,为什么?当时,其轨迹为     ;当时,其轨迹为.试试:已知,,到,两点的距离之和等于8的点的轨迹是小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数.新知2:焦点在轴上的椭圆的标准方程  其中若焦点在轴上,两个焦点坐标,则椭圆的标准方程是       ※典型例题例1写出适合下列条件的椭圆的标准方程:第7页共7页⑴,焦点在轴上;⑵,焦点在轴上;⑶.变式:方程表示焦点在轴上的椭圆,则实数的范围.小结:椭圆标准方程中:;.

3、例2 已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.变式:椭圆过点,,,求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程.※练一练练1.已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是().第7页共7页A.B.6C.D.12练2.方程表示焦点在轴上的椭圆,求实数的范围.三、总结提升※学习小结1.椭圆的定义:2.椭圆的标准方程:习题1.平面内一动点到两定点、距离之和为常数,则点的轨迹为(  ).A.椭圆B.圆C.无轨迹D.椭圆或线段或无轨迹2.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是().A.B.C.D.3.如果椭圆上一点到焦点的距

4、离等于6,那么点到另一个焦点的距离是().A.4B.14C.12D.84.椭圆两焦点间的距离为,且椭圆上某一点到两焦点的距离分别等于和,则椭圆的标准方程是5.如果点在运动过程中,总满足关系式,点的轨迹是     ,它的方程是    6.写出适合下列条件的椭圆的标准方程:(1)焦点在轴上,焦距等于,并且经过点;(2)焦点坐标分别为,;(3).7.椭圆的焦距为,求的值.第7页共7页§2.2.1椭圆及其标准方程(2)学习目标1.掌握点的轨迹的求法;2.进一步掌握椭圆的定义及标准方程.学习过程一、课前准备(预习教材理P41~P42,文P34~P36找出疑惑之处)复习1:椭圆上一点到椭圆的左焦点的距离为

5、,则到椭圆右焦点的距离是.复习2:在椭圆的标准方程中,,,则椭圆的标准方程是二、新课导学※学习探究问题:圆的圆心和半径分别是什么?※典型例题例1在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?变式:若点在的延长线上,且,则点的轨迹又是什么?第7页共7页小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆.例2设点的坐标分别为,.直线相交于点,且它们的斜率之积是,求点的轨迹方程.变式:点的坐标是,直线相交于点,且直线的斜率与直线的斜率的商是,点的轨迹是什么?※练一练练1.求到定点与到定直线的距离之比为的动点的轨迹方程.三、总

6、结提升※学习小结1.①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;②相关点法:寻求点的坐标与中间的关系,然后消去,得到点的轨迹方程.※知识拓展椭圆的第二定义:第7页共7页到定点与到定直线的距离的比是常数的点的轨迹.定点是椭圆的焦点;定直线是椭圆的准线;常数是椭圆的离心率.习题1.若关于的方程所表示的曲线是椭圆,则在().A.第一象限B.第二象限C.第三象限D.第四象限2.若的个顶点坐标、,的周长为,则顶点C的轨迹方程为().A.B.C.D.3.设定点,,动点满足条件,则点的轨迹是().A.椭圆B.线段C.不存在D.椭圆或线段4.与轴相切且和半圆内切的动圆圆心的轨迹方程是5.设为

7、定点,

8、

9、=,动点满足,则动点的轨迹是6.已知三角形的一边长为,周长为,求顶点的轨迹方程.7.点与定点的距离和它到定直线的距离的比是,求点的轨迹方程式,并说明轨迹是什么图形.第7页共7页第7页共7页

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。