欢迎来到天天文库
浏览记录
ID:46342643
大小:1.51 MB
页数:13页
时间:2019-11-22
《24.1.3弧弦圆心角市级公开课-》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1.3弧、弦、圆心角圆是中心对称图形吗?它的对称中心在哪里?·一、思考圆是中心对称图形,它的对称中心是圆心.NO把圆O的半径ON绕圆心O旋转任意一个角度,NON'把圆O的半径ON绕圆心O旋转任意一个角度,NON'把圆O的半径ON绕圆心O旋转任意一个角度,NON'把圆O的半径ON绕圆心O旋转任意一个角度,NON'定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合。把圆O的半径ON绕圆心O旋转任意一个角度,由此可以看出,点N'仍落在圆上。·圆心角:我们把顶点在圆心的角叫做圆心角.OBA二、概念如图中所示,∠AOB就是一个圆心角。如图
2、,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现哪些等量关系?为什么?根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等,OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.·OAB·OABA′B′A′B′三、探究因此,弧AB与弧A1B1重合,AB与A′B′重合.⌒AB⌒A1B1=同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角_____,所对的弦________;在同圆或等圆中,如果两条弦相等,那么他们所对的
3、圆心角______,所对的弧_________.这样,我们就得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.相等相等相等相等同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.四、定理证明:∵AB=AC∴AB=AC,△ABC等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠BOC=∠AOC.·ABCO五、例题例1如图在⊙O中,AB=AC,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.⌒⌒⌒⌒1.如图,AB、CD是⊙O的两条弦.(1)如果AB=CD,那
4、么___________,_________________.(2)如果=,那么____________,______________.(3)如果∠AOB=∠COD,那么_____________,____________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?·CABDEFOAB=CDAB=CD相等因为AB=CD,所以∠AOB=∠COD.又因为AO=CO,BO=DO,所以△AOB≌△COD.又因为OE、OF是AB与CD对应边上的高,所以OE=OF.六、练习⌒CD⌒AB⌒AB⌒CD=⌒AB⌒CD=2.如图,AB是
5、⊙O的直径,,∠COD=35°,求∠AOE的度数.·AOBCDE解:⌒BC⌒CD==⌒DE⌒BC⌒CD==⌒DE
此文档下载收益归作者所有