欢迎来到天天文库
浏览记录
ID:45956682
大小:72.50 KB
页数:7页
时间:2019-11-19
《浅谈数学基本活动经验的积累》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、浅谈数学基本活动经验的积累【摘要】数学活动经验的积累是学生不断经历、体验各种数学活动过程的结果:一、经历观察、操作活动,积累感性经验;二、经历猜想、推理、验证活动,积累思考经验;三、经历冋顾、反思活动,升华数学活动经验。【关键词】感性经验思考经验猜想验证《义务教育数学课程标准(2011年版)》提出了“四基3基础知识、基本技能、基本思想和基木活动经验。作为一个名词,“数学基本活动经验”早就被数学教育工作者所知晓。但在理论上,人们对的认识还不够深刻。“经验”一词辞典中是这样解释的:“亦称丄观经验。个体在H常生活中形成和积累的习惯、知识、技能、思想和观念等。”而经验的获得,则依赖于有效的
2、数学活动作支撑。有明确的数学内涵和数学目的,体现数学本质的活动,才能称得上“数学活动”。数学基本活动主要是感性的和逻辑的(或者理性的),所以通常“大体上可以把经验分为感性经验和逻辑经验。感性经验也依赖思考,但更多的是依赖观察;逻辑经验也依赖观察,但更多的是依赖思考”。《标准(2011年版)》特别强调“数学活动经验的积累是提高学生数学素养的重要标志。帮助学生积累数学活动经验是数学教学的重要目标,是学生不断经历、体验各种数学活动过程的结果”。下面就结合自己的教学实践,谈谈如何帮助小学生积累数学基本活动经验。一、经历观察、操作活动,积累感性经验。“儿童的思维是从动作开始的。”学生在外显的
3、行为操作中可以获得來自感官、知觉的玄接感受、体验等经验。例如,在教学“观察物体”时,教师让学生用4个同样大小的小正方体摆成一个立体图形,要求从正面看是匚□,从侧面看是rm可以怎样摆?学生经过操作、思考,交流得出了三种摆法:第一列摆3个,第二列摆1个并与第一列中的任意一个对齐。在此基础上,教师又提出问题:“如果从正面、从侧面看仍是原来的形状,至少需要多少个小正方体?”学生在原有经验的基础上,再次经历想象、操作的过程,获得了答案:至少用3个,即第一列摆2个,第二列摆1个,但不与笫一列中的任一个对齐(即从前面看,第一列中的小正方体不挡住第二列的小正方体)。上面的操作活动,不仅丰富了学生的
4、感官、知觉的经验,并与数学思维经验有机融合,极大地丰富了学生的数学活动经验。。再如,在教学“三角形三边的关系”一课时,老师先通过“走哪条路近一些?”让学生初步认识到:三角形两边之和大于第三边。然后出示三根小棒分别长10厘米、5厘米、4厘米,问:“这三根小棒能围成一个三角形吗?”有的学生认为能围成三角形。有的则认为不能。学生出现两种不同声音,并开始争论。这时老师提醒学生拿出小棒动手围一围。通过动手操作,发现不能围成三角形,老师故意问:“两边之和10+5=15厘米不是大于第三边4厘米吗?怎么围不成三角形呢?”结论与实践操作结果发生了冲突,教室一下子安静了,学生陷入沉思屮,接着有同桌小声
5、地交流,有学生发现并举手。有的说:“10+5=15厘米是大于第三条边4厘米,但5+4=9厘米却小于第三条边10厘米,所以围不成三角形。”有的说:“我知道了,每两条边的长度和大于第三条边,才能围成三角形。”有的说:“1号边加2号边大于3号边;2号边加3号边大于1号边;3号边加1号边大于2号边。”还有的说:“任意两条边的和要大于第三条边。”……起初,学生对于“三角形两边之和大丁第三边”这一结论的理解是表面的、肤浅的,于是教师创设了一个问题:“用10厘米、5厘米、4厘米的三根小棒,能围成一个三角形吗?”课堂上出现了两种不同的声音,怎么办?让学生实际动手摆一摆。学生在操作中思考并“茅塞顿开
6、”,5厘米加4厘米这两条边的和没有大于笫三边,通过互动交流、动手实践,领悟到“三角形任意两边之和大于第三边”的特征,积累了操作的感性经验,学生的思维也从肤浅走向深刻,提升了思维力度。二、经历猜想.推理、验证活动,积累思考经验。数学活动经验的核心是如何思考的经验,最终帮助学生建立自己的数学现实和数学学习的直觉,学会运用数学的思维方式进行思考。因此,教师叮以设计一些富有挑战性的问题,讣学生自主探索,提出猜想,并加以验证。例如,“把一根绳子对折三次,然后从屮间剪开,可以剪成多少段?”学生动手操作得出答案后,教师出示表格:对折次数123456从屮间剪成的359段数引导学生猜想:第4次可以剪
7、成多少段?有的学生猜剪成15段,理由是每多对折一次,增加的段数依次是2、4、6、8……还有的学生猜剪成17段,理由是每多对折一次,增加的段数依次是2、4、8、16……到底谁对呢?老师再次让学生动手操作,验证自己的猜想是否正确。得出正确答案17段后,老师乂问:按照这样的规律,对折5次可以剪成多少段?对折6次呢?在这一活动屮,教师引导学生根据前三次剪成的段数,自己进行归纳概括,试图找出蕴含在其中的规律。接着根据自己发现的规律,猜想对折4次剪成的段数,并通过操作加以验证。最
此文档下载收益归作者所有