2019年高考数学 8.7双曲线课时提升作业 理 北师大版

2019年高考数学 8.7双曲线课时提升作业 理 北师大版

ID:45695493

大小:64.00 KB

页数:6页

时间:2019-11-16

2019年高考数学 8.7双曲线课时提升作业 理 北师大版_第1页
2019年高考数学 8.7双曲线课时提升作业 理 北师大版_第2页
2019年高考数学 8.7双曲线课时提升作业 理 北师大版_第3页
2019年高考数学 8.7双曲线课时提升作业 理 北师大版_第4页
2019年高考数学 8.7双曲线课时提升作业 理 北师大版_第5页
资源描述:

《2019年高考数学 8.7双曲线课时提升作业 理 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019年高考数学8.7双曲线课时提升作业理北师大版一、选择题1.(xx·南昌模拟)已知双曲线mx2-ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为 (  )(A)(B)(C)(D)2.双曲线-y2=1(n>1)的左、右两个焦点为F1,F2,P在双曲线上,且满足

2、PF1

3、+

4、PF2

5、=2,则△PF1F2的面积为 (  )(A)(B)1(C)2(D)43.(xx·汉中模拟)设双曲线-=1(a>0)的渐近线方程为3x±2y=0,则a的值为 (  )(A)4(B)3(C)2(D)14.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦

6、点在抛物线y2=24x的准线上,则双曲线的方程为 (  )(A)-=1(B)-=1(C)-=1(D)-=15.设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 (  )(A)(B)(C)(D)6.(xx·新课标全国卷)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,

7、AB

8、=4,则C的实轴长为 (  )(A)(B)2(C)4(D)87.(xx·抚州模拟)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足

9、PF2

10、=

11、F1F2

12、,且F2到直线PF

13、1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 (  )(A)3x±4y=0(B)3x±5y=0(C)4x±3y=0(D)5x±4y=08.(能力挑战题)设F1,F2分别是双曲线x2-=1的左、右焦点,若点P在双曲线上,且·=0,则

14、+

15、= (  )(A)(B)2(C)(D)2二、填空题9.(xx·西安模拟)若椭圆+=1(a>b>0)的离心率为,则双曲线-=1的离心率为    .10.(xx·天津高考)已知双曲线C1:-=1(a>0,b>0)与双曲线C2:-=1有相同的渐近线,且C1的右焦点为F(,0),则a=   ,b=   .11.(能力挑战题)过双曲线的右焦点F作实

16、轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点为M,若点M在以AB为直径的圆的内部,则此双曲线的离心率e的取值范围为   .三、解答题12.(xx·井冈山模拟)已知A,B,P是双曲线-=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA·kPB=,求双曲线的离心率.13.(xx·马鞍山模拟)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:·=0.(3)求△F1MF2的面积.14.P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,

17、M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率.(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.答案解析1.【解析】选B.由已知双曲线的离心率为2,得:=2,解得:m=3n,又m>0,n>0,∴m>n,即>,故由椭圆mx2+ny2=1得+=1.∴所求椭圆的离心率为:e===.【误区警示】本题极易造成误选而失分,根本原因是由于将椭圆mx2+ny2=1焦点所在位置弄错,从而把a求错造成.2.【解析】选B.不妨设点P在双曲线的右支上,则

18、PF1

19、-

20、PF2

21、=2,又

22、PF1

23、+

24、

25、PF2

26、=2,∴

27、PF1

28、=+,

29、PF2

30、=-,又c=,∴

31、PF1

32、2+

33、PF2

34、2=

35、F1F2

36、2,∴∠F1PF2=90°,∴=

37、PF1

38、

39、PF2

40、=1.3.【解析】选C.双曲线-=1的渐近线方程为3x±ay=0与已知方程比较系数得a=2.4.【解析】选B.由题意可知解得所以双曲线的方程为-=1.5.【解析】选D.因为焦点在x轴上与焦点在y轴上的离心率一样,所以不妨设双曲线方程为-=1(a>0,b>0),则双曲线的渐近线的斜率k=±,一个焦点坐标为F(c,0),一个虚轴的端点为B(0,b),所以kFB=-,又因为直线FB与双曲线的一条渐近线垂直,所以k·kFB=(-)=-1(

41、k=-显然不符合),即b2=ac,c2-a2=ac,所以,c2-a2-ac=0,即e2-e-1=0,解得e=(负值舍去).【变式备选】双曲线-=1(a>0,b>0)的离心率为2,则的最小值为 (  )(A)(B)(C)2(D)1【解析】选A.因为双曲线的离心率为2,所以=2,即c=2a,c2=4a2;又因为c2=a2+b2,所以a2+b2=4a2,即b=a,因此==a+≥2=,当且仅当a=,即a=时等号成立.故的最小值为.6.【解析】选C.不妨设点A的纵坐标大于零.设C:-=1(a>0),∵

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。