欢迎来到天天文库
浏览记录
ID:45633420
大小:939.00 KB
页数:14页
时间:2019-11-15
《通用版2020高考数学一轮复习2.5函数的图象讲义文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第五节函数的图象一、基础知识批注——理解深一点1.利用描点法作函数图象其基本步骤是列表、描点、连线.首先:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 列出的点多为零点、最值点等.2.函数图象的变换(1)平移变换①y=f(x)的图象y=f(x-a)的图象;②y=f(x)的图象y=f(x)+b的图象.“左加右减,上加下减”,左加右减只针对x本身,与x的系数,无关,上加下减指的是在f(x)整体上加减.(2)对称变换①y=f(
2、x)的图象y=-f(x)的图象;②y=f(x)的图象y=f(-x)的图象;③y=f(x)的图象y=-f(-x)的图象;④y=ax(a>0且a≠1)的图象y=logax(a>0且a≠1)的图象.(3)伸缩变换①y=f(x)的图象y=f(ax)的图象.②y=f(x)的图象y=af(x)的图象.(4)翻折变换①y=f(x)的图象y=
3、f(x)
4、的图象;②y=f(x)的图象y=f(
5、x
6、)的图象.二、常用结论汇总——规律多一点1.函数图象自身的轴对称(1)f(-x)=f(x)⇔函数y=f(x)的图象关于y轴对称;(2)函数y=f(x)的图象关
7、于x=a对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x)⇔f(-x)=f(2a+x);(3)若函数y=f(x)的定义域为R,且有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=对称.2.函数图象自身的中心对称(1)f(-x)=-f(x)⇔函数y=f(x)的图象关于原点对称;(2)函数y=f(x)的图象关于(a,0)对称⇔f(a+x)=-f(a-x)⇔f(x)=-f(2a-x)⇔f(-x)=-f(2a+x);(3)函数y=f(x)的图象关于点(a,b)成中心对称⇔f(a+x)=2b-f(a-x)⇔f(x)=2b
8、-f(2a-x).3.两个函数图象之间的对称关系(1)函数y=f(a+x)与y=f(b-x)的图象关于直线x=对称(由a+x=b-x得对称轴方程);(2)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称;(3)函数y=f(x)与y=2b-f(-x)的图象关于点(0,b)对称;(4)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)对称.三、基础小题强化——功底牢一点(1)将函数y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到函数y=f(x+1)+1的图象.( )(2)当x∈(0,+∞)时
9、,函数y=
10、f(x)
11、与y=f(
12、x
13、)的图象相同.( )(3)函数y=f(x)与y=-f(x)的图象关于原点对称.( )(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.( )答案:(1)× (2)× (3)× (4)√(二)选一选1.下列图象是函数y=的图象的是( )答案:C2.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )A.ex+1 B.ex-1C.e-x+1D.e-x-1解析:选D 与曲线y=ex关于y轴
14、对称的图象对应的解析式为y=e-x,将函数y=e-x的图象向左平移1个单位长度即得y=f(x)的图象,∴f(x)=e-(x+1)=e-x-1.3.甲、乙二人同时从A地赶往B地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A地的距离s与所用时间t的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )A.甲是图①,乙是图②B.甲是图①,乙是图④C.甲是图③,乙是图②D.甲是图③,乙是图④解析:选B 由题知
15、速度v=反映在图象上为某段图象所在直线的斜率.由题知甲骑自行车速度最大,跑步速度最小,甲与图①符合,乙与图④符合.(三)填一填4.已知函数f(x)的图象如图所示,则函数g(x)=logf(x)的定义域是________.解析:当f(x)>0时,函数g(x)=logf(x)有意义,由函数f(x)的图象知满足f(x)>0时,x∈(2,8].答案:(2,8]5.若关于x的方程
16、x
17、=a-x只有一个解,则实数a的取值范围是________.解析:由题意得a=
18、x
19、+x,令y=
20、x
21、+x=其图象如图所示,故要使a=
22、x
23、+x只有一个解,则a>0
24、.答案:(0,+∞)[典例] 作出下列函数的图象.(1)y=(2)y=2x+2;(3)y=x2-2
25、x
26、-1.[解] (1)分段分别画出函数的图象,如图①所示.(2)y=2x+2的图象是由y=2x的图象向左平移2个单位长
此文档下载收益归作者所有