欢迎来到天天文库
浏览记录
ID:45601089
大小:4.14 MB
页数:21页
时间:2019-11-15
《 全国四省名校2018届高三第三次大联考数学(理)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018届四省名校高三第三次大联考理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数满足(为虚数单位),则的虚部为()A.B.C.D.【答案】B【解析】分析:由已知等式变形得,再利用复数的四则运算法则求出z的代数形式,再写出虚部。详解:由有,则z的虚部为,故选B.点睛:本题主要考查了复数的四则运算以及复数的代数形式,属于容易题。若复数,则复数的虚部为。2.某几何体的三视图是如图所示的三个直角三角形,若该几何体的体积为,则()A.B.C.D.【答
2、案】C【解析】分析:首先确定几何体的空间结构,然后结合体积公式得到关于d的方程,解方程即可求得最终结果.详解:由题意可知,该几何体是一个三棱锥,其底面为直角三角形,且直角三角形的直角边长度分别为dcm,9cm,其高为8cm,结合三棱锥体积公式可得:,解得:,即.本题选择C选项.点睛:本题主要考查三视图还原几何体,三棱锥的体积公式等知识,意在考查学生的转化能力和计算求解能力.3.设集合则A.B.C.D.【答案】B【解析】分析:先由不等式求出的范围,写成集合即为N,再得出集合M,N之间的关系,最后得到正确的选项。详解:由有,即,所以
3、,根据全称命题的特点和子集的定义,得出正确选项为B.点睛:本题主要考查了集合之间的包含关系以及全称命题和特称命题的特征等,属于易错题。错误的主要原因是没有弄懂全称命题和特称命题的定义。4.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,问最小1份为()A.B.C.D.【答案】A【解析】设5人所分得的面包为a-2d,a-d,a,a+d,a+2d,则易知5a=100,a=20又,3a+3d=7(2a-3d),所以24d=11a,
4、,所以最小的1份为.5.对任意实数有若则()A.B.C.D.【答案】B【解析】分析:由题意分别求得的值,然后两者作差得到关于a的方程,求解方程即可求得最终结果.详解:令可得:,即,展开式的通项公式为:,令可得:,令可得:,则,结合题意有:,解得:.本题选择B选项.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,
5、再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.6.双曲线的一条渐近线截圆为弧长之比是的两部分,则双曲线的离心率等于()A.B.C.D.【答案】C【解析】分析:结合圆的方程首先确定渐近线方程,然后结合双曲线的方程求得b的值,之后求解离心率即可.详解:圆的方程的标准方程为:,圆的圆心坐标为,且经过坐标原点,双曲线的渐近线经过坐标原点,若双曲线的一条渐近线截圆为弧长之比是的两部分,则双曲线的一条渐近线的倾斜角为,其斜率,据此可得:,双曲线的离心率为.本题选择C选项.点睛:双曲线的离心率是双曲线
6、最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).7.阅读如图所示的程序,若运行结果为35,则程序中的取值范围是()A.B.C.D.【答案】A【解析】分析:首先确定程序的功能,然后结合题意确定a的取值范围即可.详解:由程序语句可知程序运行程序过程中数据变化如下:S=11,i=9;S=2
7、0,i=8;S=28,i=7;S=35,i=6,此时结束循环,故68、的指数或对数采用中间量进行比较,中间量通常有0,1,等。9.设函数为的导函数,若函数的图象关于原点对称,则()A.B.C.D.【答案】D【解析】分析:首先确定g(x)的解析式,然后结合三角函数的性质求解的值即可.详解:由导函数的运算法则可得:,则:,结合正弦函数
8、的指数或对数采用中间量进行比较,中间量通常有0,1,等。9.设函数为的导函数,若函数的图象关于原点对称,则()A.B.C.D.【答案】D【解析】分析:首先确定g(x)的解析式,然后结合三角函数的性质求解的值即可.详解:由导函数的运算法则可得:,则:,结合正弦函数
此文档下载收益归作者所有