资源描述:
《2019高考数学二轮复习 第6讲 平面向量专题突破 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第6讲 平面向量1.(1)[2018·全国卷Ⅰ]在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )A.- B.-C.+D.+(2)[2014·全国卷Ⅰ]设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A. B. C. D.(3)[2018·全国卷Ⅲ]已知向量a=(1,2),b=(2,-2),c=(1,λ),若c∥(2a+b),则λ= . [试做] _____________________________________
2、_____________________________________________________________________________________________________________________________________________________命题角度 平面向量的线性运算解题策略:①观察各向量的位置;②寻找相应的三角形或平行四边形;③运用法则找关系;④用好平面向量基本定理和向量共线定理.2.【引·全国卷】(1)[2018·全国卷Ⅱ]已知向量a,b满足
3、
4、a
5、=1,a·b=-1,则a·(2a-b)=( )A.4 B.3 C.2 D.0(2)[2013·全国卷Ⅱ]已知正方形ABCD的边长为2,E为CD中点,则·= . [试做] _____________________________________________________________________________________________________________________________________________
6、_____________________________________________【荐·地方卷】[2017·山东卷]已知e1,e2是互相垂直的单位向量,若e1-e2与e1+λe2的夹角为60°,则实数λ的值是 . 命题角度 平面向量数量积的公式及应用①定义法;②坐标法;③将向量数量积的几何意义转化为一个向量在另一个向量上的投影与另一向量模的积.小题1平面向量的线性运算1(1)已知D,E,F分别是△ABC的边BC,CA,AB的中点,且=a,=b,=c,则有下列各式:①=c-b;②=a+b;③
7、=-a+b;④++=0.其中正确的等式有( ) A.1个B.2个C.3个D.4个(2)在△ABC中,点D是边BC上任意一点,M是线段AD的中点,若存在实数λ和μ,使得=λ+μ,则λ+μ=( )A.B.-C.2D.-2[听课笔记]_________________________________________________________________________________________________________________________
8、_____________________________________________________________【考场点拨】高考中向量线性运算的关注点:(1)解决向量的线性运算问题时应关注两点:①尽可能地将向量转化到同一个平行四边形或三角形中(注意已知条件);②选用从同一顶点出发的基本向量或首尾相接的向量.(2)向量共线有两个常用结论:①向量a=(x1,y1),b=(x2,y2)平行,坐标满足的关系为x1y2-x2y1=0;②若O为直线AB外一点,点P在直线AB上,则有=α+β且α+β=1.【
9、自我检测】1.下列各组向量中,可以作为基底的是( )A.e1=(0,0),e2=(1,2)B.e1=(2,-3),e2=,-C.e1=(3,5),e2=(6,10)D.e1=(-1,2),e2=(5,7)2.已知O是正△ABC的中心,若=λ+μ,其中λ,μ∈R,则的值为( )A.-B.-C.-D.23.设点O在△ABC的外部,且2-3-5=0,则S△ABC∶S△OBC=( )A.2∶1B.3∶1C.3∶2D.4∶1小题2平面向量的数量积及应用2(1)已知向量a与b的夹角是,且
10、a
11、=1,
12、b
13、=2
14、,若(a+λb)⊥a,则实数λ=( )A.-B.C.D.-(2)已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c等于( )A.,B.-,C.,D.-,-(3)已知向量m=(1,2),n=(2,3),则m在m-n方向上的投影为 . [听课笔记]___________________________________________________________________________