资源描述:
《2019年高中数学 1.4数据的数字特征检测试题 北师大版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019年高中数学1.4数据的数字特征检测试题北师大版必修3一、选择题1.一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x为( )A.21B.22C.20D.23[答案] A[解析] 由=22得x=21.2.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大B.平均数反映数据的集中趋势,标准差则反映数据离平均值的波动大小C.方差的求法是求出各个数据与平均值的差的平方后再求和D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高[答案
2、] B[解析] 平均数、中位数、众数都是反映一组数据的“集中趋势”的统计量,方差、标准差、极差都是反映数据的离散程度的统计量,故选B.3.在一次歌声大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A.9.4 0.484B.9.4 0.016C.9.5 0.04D.9.5 0.016[答案] D[解析] 去掉一个最高分和一个最低分后剩余分数为9.4,9.4,9.6,9.4,9.7.其平均数为==9.
3、5.方差s2=(0.12+0.12+0.12+0.12+0.22)=×0.08=0.016.4.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差[答案] D[解析] 本题考查样本的数字特征.A的众数88,B则为88+2=90.“各样本都加2”后,平均数显然不同.A的中位数=86,B的中位数=88,而由标准差公式s=知D正确.5.
4、甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3,下列说法正确的有( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏A.1个B.2个C.3个D.4个[答案] D[解析] s甲>s乙,说明乙队发挥比甲队稳定,甲>乙,说明甲队平均进球多于乙队,但乙队平均进球数为1.8,标准差仅有0.3,说明乙队的确很少不进球.6.期中考试后,班长算出了全班40人数学成绩的平
5、均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均数为N,那么M∶N为( )A.B.1C.D.2[答案] B[解析] 平均数是用所有数据的和除以数据的总个数而得到的.设40位同学的成绩为xi(i=1,2,,…,40),则M=,N=.故M∶N=1.二、填空题7.若样本x1+2,x2+2,…,xn+2的平均值为10,则样本2x1+3,2x2+3,…,2xn+3的平均值为________.[答案] 19[解析] ∵x1+2,x2+2,…,xn+2的平均值为10,∴x1,x2,…
6、,xn的平均值为8,∴2x1+3,2x2+3,…,2xn+3的平均值为2×8+3=19.8.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,若甲运动员的中位数为a,乙运动员的众数为b,则a-b=________.甲乙798078557911133462202310140[答案] 8[解析] 由茎叶图知a=19,b=11,∴a-b=8.三、解答题9.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82,84
7、,85,89,79,80,91,89,79,74;乙班:90,76,86,81,84,87,86,82,85,83.(1)求两个样本的平均数甲和乙;(2)求两个样本的方差和标准差;(3)比较两组数据的平均数,并估计哪个班的平均分较高;(4)比较两组数据的标准差,并估计哪个班的数学成绩比较整齐.[解析] (1)甲=(82+84+85+89+79+80+91+89+79+74)=83.2(分),乙=(90+76+86+81+84+87+86+82+85+83)=84(分).(2)s=[(82-83.2)2+(8
8、4-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36(分2),s=[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13.2(分