欢迎来到天天文库
浏览记录
ID:45513115
大小:70.80 KB
页数:3页
时间:2019-11-14
《2019-2020年高中数学第一讲不等式和绝对值不等式1.1不等式第1课时课后训练新人教A版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高中数学第一讲不等式和绝对值不等式1.1不等式第1课时课后训练新人教A版选修1.若a>b,则下列不等式中一定成立的是( )A.a>2bB.>-1C.2a>2bD.lg(a-b)>12.如果a>b,那么下列结论中错误的是( )A.a-3>b-3B.3a>3bC.>D.-a>-b3.已知a,b,c均为实数,下面四个命题中正确命题的个数是( )①a<b<0a2<b2;②<ca<bc;③ac2>bc2a>b;④a<b<0<1.A.0B.1C.2D.34.已知m,n∈R,则成立的一个充要条件是( )A.m>0>nB.n>m>
2、0C.m<n<0D.mn(m-n)<05.已知函数f(x)=x+x3,x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,那么f(x1)+f(x2)+f(x3)的值( )A.一定大于0B.一定小于0C.等于0D.正负都有可能6.已知0<a<,且M=,N=,则M,N的大小关系是________.7.若a>b>0,m>0,n>0,则,,,按由小到大的顺序排列为________.8.若-1<a<2,-2<b<1,则a-
3、b
4、的取值范围是________.9.(1)研究函数f(x)=的单调性,并证明你的结论;(2)已知a≥1,试用
5、(1)的结论比较M=和N=的大小.10.若已知二次函数y=f(x)的图象过原点,且1≤f(-1)≤2,3≤f(1)≤4.求f(-2)的范围.参考答案1.答案:C ∵y=2x(x∈R)是增函数,又a>b,∴2a>2b.2.答案:D ∵a>b,∴-a<-b.故D项错误.3.答案:C ①不正确.∵a<b<0,∴-a>-b>0,∴(-a)2>(-b)2,即a2>b2.②不正确.∵<c,若b<0,则a>bc.③正确.∵ac2>bc2,∴c≠0,∴a>b.④正确.∵a<b<0,∴-a>-b>0.∴1>>0.4.答案:D ∵>>0>0mn(n-m)>0mn
6、(m-n)<0.5.答案:B x1+x2<0x1<-x2,又∵f(x)=x+x3为奇函数,且在R上递增,∴f(x1)<f(-x2)=-f(x2),即f(x1)+f(x2)<0.同理:f(x2)+f(x3)<0,f(x1)+f(x3)<0.以上三式相加,整理得f(x1)+f(x2)+f(x3)<0.6.答案:M>N 方法一:M-N===,由已知可得a>0,b>0且ab<1,∴1-ab>0,∴M-N>0,即M>N.方法二:=,∵0<a<,∴0<ab<1,∴2ab<2,∴a+b+2ab<a+b+2.∴>1.又M>0,N>0,∴M>N.7.答案:<<
7、< 由a>b>0,m>0,n>0,知<<1,且<<1,所以>>1,即1<<.8.答案:(-3,2) ∵-2<b<1,∴0≤
8、b
9、<2.∴-2<-
10、b
11、≤0.而-1<a<2,∴-3<a-
12、b
13、<2.9.分析:(1)用定义法证明函数f(x)=的单调性;(2)在单调区间内,利用函数的单调性比较大小.解:(1)f(x)在其定义域上是减函数.证明:函数f(x)=的定义域是[0,+∞),设x1,x2∈[0,+∞)且x1<x2,则f(x1)-f(x2)====(x1-x2)(-).∵>>0,>>0,∴+>+>0.∴0<<,即-<0.又∵x1<x2,∴x1-
14、x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在[0,+∞)上是减函数.(2)构造函数f(x)=,由(1)知,当x≥0时f(x)为减函数.M=f(a)=,N=f(a-1)=,且a>a-1≥0,则f(a)<f(a-1),∴M<N.10.解:∵二次函数y=f(x)的图象过原点,∴可设f(x)=ax2+bx(a≠0).∴∴∴f(-2)=4a-2b=3f(-1)+f(1).∵1≤f(-1)≤2,3≤f(1)≤4,∴6≤f(-2)≤10,即f(-2)的范围是[6,10].
此文档下载收益归作者所有