5、传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅”.结论显然是错误的,因为( C )A.大前提错误 B.小前提错误C.推理形式错误 D.非以上错误解析 推理形式不符合三段论推理的形式,三段论的形式是:M是P,S是M,则S是P,而上面的推理形式则是:M是P,S是P,则S是M.故选C.3.数列2,5,11,20,x,47,…中的x=( B )A.28 B.32 C.33 D.27解析 由5-2=3,11-5=6,20-11=9,可知x-20=12,因此x=32.4.给出下列三个类比结论:①(ab)n=a
6、nbn与(a+b)n类比,则有(a+b)n=an+bn;②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β)=sinαsinβ;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数为( B )A.0 B.1 C.2 D.3解析 只有③正确.5.观察下列不等式:1+<,1++<,1+++<,1++++<,…按此规律,第五个不等式为!!!! 1+++++< ####.解析 1+<=,1++<=,1+++<==,1++++<==,照此规律可
7、以得到1+++++<=.所以第五个不等式为1+++++<.一 类比推理(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有:平面与空间类比、低维与高维的类比、等差与等比数列类比、运算类比(加与乘、乘与乘方、减与除、除与开方)、数的运算与向量运算类比、圆锥曲线间的类比等.【例1】(1)若数列{an}是等差数列,则数列{bn}也为等差数列.类比这一性质可知,若正项数列是等比数列,且也是等比数列,则dn的表达式应为( D )A.dn= B.dn=