2019-2020年高考数学二模试卷(文科) 含解析(II)

2019-2020年高考数学二模试卷(文科) 含解析(II)

ID:45475783

大小:253.30 KB

页数:15页

时间:2019-11-13

2019-2020年高考数学二模试卷(文科) 含解析(II)_第1页
2019-2020年高考数学二模试卷(文科) 含解析(II)_第2页
2019-2020年高考数学二模试卷(文科) 含解析(II)_第3页
2019-2020年高考数学二模试卷(文科) 含解析(II)_第4页
2019-2020年高考数学二模试卷(文科) 含解析(II)_第5页
资源描述:

《2019-2020年高考数学二模试卷(文科) 含解析(II)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学二模试卷(文科)含解析(II) 一、选择题(本题共8个小题,每小题5分,共40分)1.已知复数z满足z=(i为虚数单位),则z=(  )A.B.C.1﹣iD.1+i2.已知直线l:y=kx+b,曲线C:x2+(y﹣1)2=1,则“b=1”是“直线l与曲线C有公共点”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若a=50.2,b=logπ3,c=log5sinπ,则(  )A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.执行如图所示的程序框图,输出的S值为8,则判断条件是(  )A.k<2

2、B.k<4C.k<3D.k≤35.点P为△ABC边AB上任一点,则使S△PBC≤S△ABC的概率是(  )A.B.C.D.6.函数f(x)=sin(2x+)的图象向左平移φ(φ>0)个单位后关于原点对称,则φ的最小值为(  )A.B.C.D.7.已知F1,F2分别为双曲线C:﹣=1(a>0,b>0)的左右焦点,过F1的直线l与双曲线C的左右两支分别交于A,B两点,若

3、AB

4、:

5、BF2

6、:

7、AF2

8、=4:3:5,则双曲线的离心率为(  )A.B.C.2D.8.在平行四边形ABCD中,AB=2,BC=1,∠ABC=120°,平面ABCD内有一点P,满足AP=,若=λ+μ(

9、λ,μ∈R),则2λ+μ的最大值为(  )A.B.C.D. 二.填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卷中相应的横线上.9.某学校小学部有270人,初中部有360人,高中部有300人,为了调查学生身体发育状况的某项指标,若从初中部抽取了12人,则从该校应一共抽取________人进行该项调查.10.甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V1、V2,则V1:V2等于________.11.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD

10、=1,PB=9,则EC=________.12.函数的单调递增区间是________.13.已知数列{an},a1=1,a2=3,an+2=an+1﹣an,则axx=________.14.若函数f(x)=x2+2a

11、x

12、+a2﹣6的图象与x轴有三个不同的交点,函数g(x)=f(x)﹣b有4个零点,则实数b的取值范围是________. 三.解答题:本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.已知函数f(x)=cosx(cosx+sinx).(Ⅰ)求f(x)的最小值;(Ⅱ)在△ABC中,角A、B、C的对边分别是a、b、c,若f(C)=1且c=

13、,a+b=4,求S△ABC.16.某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B若干件,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:每件产品A每件产品B研制成本、搭载费用之和(百万元)21.5计划最大资金额15(百万元)产品重量(千克)11.5最大搭载重量12(千克)预计收益(百元)10001200________并且B产品的数量不超过A产品数量的2倍.如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?17.如图,边长为的正方形ADEF与梯形ABCD所在的平

14、面互相垂直,其中AB∥CD,AB⊥BC,CD=BC=AB=1,AE∩DF=O,M为EC的中点.(Ⅰ)证明:OM∥平面ABCD;(Ⅱ)求二面角D﹣AB﹣E的正切值;(Ⅲ)求BF与平面ADEF所成角的余弦值.18.已知椭圆E:+=1(a>b>0)的长轴长为短轴长的倍.(1)求椭圆E的离心率;(2)设椭圆E的焦距为2,直线l与椭圆E交于P,Q两点,且OP⊥OQ,求证:直线l恒与圆x2+y2=相切.19.已知数列{an}的前n项和为Sn,Sn=2an﹣2.(1)求数列{an}的通项公式;(2)设bn=,Tn为{bn}的前n项和,求T2n.20.已知函数f(x)=ax﹣1﹣ln

15、x.(a∈R)(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)在x=2处的切线斜率为,不等式f(x)≥bx﹣2对任意x∈(0,+∞)恒成立,求实数b的取值范围;(Ⅲ)证明对于任意n∈N,n≥2有:+++…+<. xx天津市十二区县重点高中高考数学二模试卷(文科)参考答案与试题解析 一、选择题(本题共8个小题,每小题5分,共40分)1.已知复数z满足z=(i为虚数单位),则z=(  )A.B.C.1﹣iD.1+i【考点】复数代数形式的乘除运算.【分析】直接利用分子分母同时乘以分母的共轭复数得答案.【解答】解:z==,故选:A. 2.已知直线l:y=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。