欢迎来到天天文库
浏览记录
ID:45379988
大小:145.00 KB
页数:14页
时间:2019-11-12
《2019-2020学年高二数学下学期期中试题 文(含解析) (III)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020学年高二数学下学期期中试题文(含解析)(III)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】分析:首先化简复数,然后结合复数对应的点即可求得最终结果.详解:结合复数的运算法则可得:,该复数对应的点的坐标位于第一象限.本题选择A选项.点睛:本题主要考查复数的混合运算,意在考查学生的转化能力和计算求解能力.2.已知则使得成立的一个必要不充分条件为()A.B.C.D.【答案】B【解析】分析:逐一考查
2、所给的选项与a>b之间的关系即可求得最终结果.详解:逐一考查所给命题与的关系:是的既不充分也不必要条件;是的必要不充分条件;是的充分不必要条件;是的充分必要条件.本题选择B选项.点睛:本题主要考查命题的充分必要条件的判断及其应用,意在考查学生的转化能力和计算求解能力.3.若函数的最小值为3,则实数的值为()A.4B.2C.2或D.4或【答案】D【解析】4或,选D.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、
3、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.4.到两坐标轴的距离相等的动点的轨迹方程是()A.B.C.D.【答案】D【解析】设动点的坐标为(x,y).因为动点到两坐标轴的距离相等,所以
4、x
5、=
6、y
7、即y2=x2,动点的轨迹方程是y2=x2,本题选择C选项.5.双曲线的渐近线方程是()A.B.C.D.【答案】B【解析】分析:由题意结合双曲线的性质求解双曲线的渐近线方程即可.详解:结合双曲线的方程,令整理可得:双曲线的渐近线方程是.本题选择B选项.点睛:本题主要考查双曲线的渐近线方程的求解,意在考查学生的转化能力和计算求解能力.6.在激烈的市场竞争中,广告似乎
8、已经变得不可或缺.为了准确把握广告费与销售额之间的关系,某公司对旗下的某产品的广告费用与销售额进行了统计,发现其呈线性正相关,统计数据如下表:广告费用(万元)2345销售额(万元)26394954根据上表可得回归方程,据此模型可预测广告费为6万元的销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【答案】B【解析】∵数据的样本中心点在线性回归直线上,回归方程中的̂为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,本题选择B选项.点睛:一是回归分析是
9、对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.7.函数在上的最大值为()A.-4B.-4C.D.2【答案】C【解析】函数的导数为f′(x)=−x2+4,由f′(x)=0,可得x=2(−2舍去),由可得f(x)在[0,3]上的最大值为.本题选择C选项.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内
10、所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.8.已知,则不等式成立的概率是()A.B.C.D.【答案】D【解析】分析:首先求解对数不等式,然后结合长度型几何概型计算公式即可求得最终结果.详解:求解对数不等式有:,则:,结合长度型几何概型计算公式可得满足题意的概率值为:.本题选择D选项.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.9.
11、函数的单调增区间为()A.B.C.D.【答案】B【解析】函数y=x2−2lnx的定义域为(0,+∞),求函数y=x2−2lnx的导数,得,,令y′>0,解得x<−1(舍)或x>1,∴函数y=x2−2lnx的单调增区间为(1,+∞)本题选择B选项.10.如果椭圆的弦被点平分,则这条弦所在的直线方程是()A.B.C.D.【答案】D【解析】分析:由题意利用点差法求解弦所在的直线方程即可.详解:设弦与椭圆的交点为:,,由题意可知:,两式作差可得:,则:,设直线的斜率为,由题意可得:,解得:.则直线方程为:,整理为一般式即:.本题选择D选项.点睛:本题主要考查
此文档下载收益归作者所有