欢迎来到天天文库
浏览记录
ID:45347825
大小:327.30 KB
页数:15页
时间:2019-11-12
《2019-2020年中考数学思维方法讲义:第13讲 直线和圆的位置关系 (I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、状元廊学校数学思维方法讲义之十三年级:九年级2019-2020年中考数学思维方法讲义:第13讲直线和圆的位置关系(I)圆的知识在平面几何中乃至整个初中教学中都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何知识的综合运用,又是在学习了点和圆的位置关系的基础上进行的,在几何证明与计算中,将起到重要的作用,是中考必考查点。【知识纵横】§Ⅰ直线和圆的位置关系:设圆的半径为r,圆心到直线的距离为d.⑴直线与圆相交d______r;⑵直线与圆相切d______r;⑶直线与圆相离d______r。§Ⅱ圆的切线:1.一个定义:与
2、圆只有一个公共点的直线叫做圆的_____;这个公共点叫做_____;2.两种判定:⑴若圆心到直线的距离等于半径,则该直线是圆的切线;⑵经过直径的一端,并且垂直于这条直径的直线是圆的切线;3.判定直线和圆的位置,一般考虑如下“三步曲”:一“看”:看看题目中有没有告诉我们直线和圆有几个公共点;二“算”:算算圆心到直线的距离d和圆的半径为r之间的大小关系,然后根据上述关系作出判断;三“证明”:证明直线是否经过直径的一端,并且与该直径的位置关系是否垂直。4.四条性质:切线有许多重要性质⑴圆心到切线的距离等于圆的_____;⑵过切点的半径垂直
3、于_____;⑶经过圆心,与切线垂直的直线必经过_____;⑷经过切点,与切线垂直的直线必经过_____。5.弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角;定理:弦切角等于它所夹的弧所对的圆周角.推论:a)两个弦切角所夹的弧相等,这两个弦切角也相等;b)弦切角的度数等于它所夹弧度数的一半。【典例精析】考点1:直线和圆的位置关系【例1】1、如图,已知⊙是以数轴的原点为圆心,半径为1的圆,,点在数轴上运动,若过点且与平行的直线与⊙有公共点,设,则的取值范围是__________.2、射线QN与等边△ABC的两边AB
4、,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).变式一:1、如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=时,⊙C与直线AB相切.2、如图,在直角梯形ABCD
5、中,已知AD∥BC,∠C=90°,且AB>AD+BC,AB是⊙O直径,则直线CD与⊙O的位置关系为______.考点2:圆的切线的性质基本运用【例2】已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=,求EF的长.变式二:如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC
6、;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.考点3:切线的判定定理运用【例4】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.【例5】如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M
7、是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.变式三:如图,中,,以为直径作交边于点,是边的中点,连接.(1)求证:直线是的切线;CEBAOFD(2)连接交于点,若,求的值.【思维拓展】【例6】如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F,过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.【例7】已知AB是⊙O的直径,AB=4,
8、点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=时(如图),求证:CD是⊙O的切线;(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△AC
此文档下载收益归作者所有