欢迎来到天天文库
浏览记录
ID:45077858
大小:3.37 MB
页数:17页
时间:2019-11-09
《 湖北省武汉市四校联合体2018-2019学年高二(上)期末数学试题(含答案解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018-2019学年湖北省武汉市四校联合体高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设某高中的男生体重(单位:)与身高(单位:cm)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则下列结论中不正确的是( )A.与有正的线性相关关系B.回归直线过样本点的中心C.若该高中某男生身高增加,则其体重约增加D.若该高中某男生身高为,则可断定其体重必为【答案】D【解析】【分析】根据线性回归方程的意义,判断选项中的命题是否正确即可.【详解】根据与的线性回归方程为可得,,因此与有
2、正的线性相关关系,故A正确;回归直线过样本点的中心,B正确;该高中某男生身高增加,预测其体重约增加,故C正确;若该高中某男生身高为,则预测其体重约为,故D错误.故选D【点睛】本题主要考查线性回归分析,熟记线性回归方程的定义以及回归分析的相关概念即可,属于基础题型.2.命题“使得”的否定是( )A.使得B.,使得C.使得D.,使得【答案】B【解析】【分析】根据含有一个量词的命题的否定,直接可写出结果.【详解】命题“使得”的否定是“,使得”.故选B【点睛】本题主要考查特称命题的否定,只需改量词和结论即可,属于基础题型.3.如
3、图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷800个点,其中落入黑色部分的有453个点,据此可估计黑色部分的面积约为( )A.11B.10C.9D.8【答案】C【解析】【分析】计算正方形二维码的面积,利用面积比等于对应的点数比,即可求出黑色部分的面积.【详解】因为边长为4的正方形二维码面积为,设图中黑色部分的面积为,则,所以.故选C【点睛】本题主要考查模拟方法估计概率,熟记模拟估计方法即可,属于基础题型.4.抛物线y=4x2的焦点坐标是( )A.(0,1)B.(1,0)C.D.【答
4、案】C【解析】抛物线标准方程为,开口向上,故焦点坐标为,故选C.5.已知,且,则( )A.B.2C.D.【答案】B【解析】【分析】先由与的坐标,表示出与,再由向量共线的坐标表示即可求出结果.【详解】因为,所以,;又,所以,解得,因此.故选B【点睛】本题主要考查由向量共线的问题,根据向量的坐标运算求解即可,属于基础题型.6.执行如图所示的程序框图,若输入,则输出的的值为( )A.27B.56C.113D.226【答案】C【解析】【分析】按照程序框图,逐步只需即可得出结果.【详解】初始值为,第一步:,进入循环;第二步:,,
5、进入循环;第三步:,,进入循环;第四步:,,进入循环;第五步:,,结束循环,输出.故选C【点睛】本题主要考查程序框图,分析框图的作用,逐步执行即可,属于基础题型.7.若且,则实数的值为( )A.1或B.C.D.1【答案】A【解析】【分析】分别令和,即可结合题中条件,即可求出结果.【详解】因为令,则;令则,又,所以,即,因此,解得或.故选A【点睛】本题主要考查二项式定理的应用,熟记二项式定理即可求解,属于基础题型.8.当双曲线的焦距取得最小值时,其渐近线的斜率是( )A.B.C.D.【答案】B【解析】【分析】先由题意求出
6、范围,再表示出焦距,进而可得出结果.【详解】因为表示双曲线,所以,解得;又焦距为,当且仅当时,取最小值,此时双曲线方程为,因此渐近线的斜率为.故选B【点睛】本题主要考查双曲线的简单性质,熟记双曲线性质即可,属于基础题型.9.下列说法中正确的是( )A.若事件A与事件B是互斥事件,则B.若事件A与事件B满足条件:,则事件A与事件B是对立事件C.一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红
7、牌”是互斥事件【答案】D【解析】【分析】由互斥事件的概念可判断A,D;根据对立事件的概念可判断B,C.【详解】不能同时发生的事件称为互斥事件,故D正确;互斥的两个事件的并事件不一定包含所有情况,因此若事件A与事件B是互斥事件,则概率之和不一定等于1,所有A错;交事件为不可能事件,并事件为必然事件的两个事件互为对立事件;对于B选项,事件A与事件B满足条件:,但A与B的交事件不一定为不可能事件,所有B错;C中事件“至少有一次中靶”与事件“至多有一次中靶”都包含“有一次中靶”,交事件不是不可能事件,所有C错.故选D【点睛】本题主
8、要考查互斥事件,熟记概念即可,属于基础题型.10.设抛物线与椭圆相交于两点,若为抛物线的焦点,则的面积为( )A.B.C.D.【答案】B【解析】【分析】由抛物线与椭圆方程联立,求出两点坐标,得出长度,进而可求出结果.【详解】由得,解得(舍)或,所以,即,,因此,又为抛物线的焦点,所以,所以.故选B【点
此文档下载收益归作者所有