欢迎来到天天文库
浏览记录
ID:44870239
大小:652.69 KB
页数:31页
时间:2019-10-31
《相似专题精讲》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、一、专题精讲相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)(平行)(不平行)(二)8字型、反8字型(蝴蝶型)(平行)(不平行)(三)母子型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:一、相似三角形判定的变化模型旋转型:由A字型旋转得到。8字型拓展共享性一线三等角的变形一线三直角的变形二、专题过关题型1:母子型相似三角形1、已知:如图,△ABC中,点E在中线AD上,.求证:(1);(2).ACDEB2、已知:如图,
2、在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.ACBPDE题型2:双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=
3、2ED分析:两个角对应相等的两个三角形互为相似三角形,两边对应成比例,夹角相等的两个三角形互为相似三角形.根据此可进行证明.题型3:共享型相似三角形1、已知:如图,在Rt△ABC中,AB=AC,∠DAE=45°.求证:(1)△ABE∽△ACD;(2).题型4:一线三等角型相似三角形1、如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°(1)求证:△BDE∽△CFD(2)当BD=1,FC=3时,求BECADBEF2、(1)在中,,,点、分别在射线、上(点不与点、点重合),且保持.①若点在线
4、段上(如图),且,求线段的长;②若,,求与之间的函数关系式,并写出函数的定义域;ABCPQABC备用图ABC备用图(2)正方形的边长为(如下图),点、分别在直线、上(点不与点、点重合),且保持.当时,求出线段的长.ABCDABCDABCD3、已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.(1)如图8,P为AD上的一点,满足∠BPC=∠A.①求证;△ABP∽△DPC②求AP的长.CDABP(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线B
5、C于点E,同时交直线DC于点Q,那么①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;②当CE=1时,写出AP的长.题型5:一线三直角型1、在直角三角形ABC中,是AB边上的一点,E是在AC边上的一个动点,(与A,C不重合),与射线BC相交于点F.(1)、当点D是边AB的中点时,求证:(2)、当,求的值(3)、当,设,求y关于x的函数关系式,并写出定义域一、能力提升1、如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE
6、是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有( )A.1个B.2个C.3个D.4个考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质。分析:①利用SAS证明△BAD≌△CAE,可得到CE=BD,②利用平行四边形的性质可得AE=CD,再结合△ADE是等腰直角三角形可得到△ADC是等腰直角三角形;③利用SAS证明△BAE≌△BA
7、D可得到∠ADB=∠AEB;④利用得出∠GFD=∠AFE,以及∠GDF+GFD=90°,进而得出△CGD∽△EAF,得出比例式.解答:解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即:∠BAD=∠CAE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AE=AD,∴△BAD≌△CAE(SAS),∴CE=BD,∴故①正确;②∵四边形ACDE是平行四边形,∴∠EAD=∠ADC=90°,AE=CD,∵△ADE都是等腰直角三角形,∴AE=AD,∴AD=CD,∴△ADC是等
8、腰直角三角形,∴②正确;③∵△ADC是等腰直角三角形,∴∠CAD=45°,∴∠BAD=90°+45°=135°,∵∠EAD=∠BAC=90°,∠CAD=45°,∴∠BAE=360°﹣90°﹣90°﹣45°=135°,又AB=AB,AD=AE,∴△BAE≌△BAD(SAS),∴∠ADB=∠AEB;故③正确;④∵△BAD≌△CAE,△BAE≌△BAD,∴△CAE≌△BAE,∴∠BEA=∠AEC=∠BDA,∵∠AEF+∠AFE=90°,∴∠AFE+∠BEA=9
此文档下载收益归作者所有