2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)讲义新人教A版

2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)讲义新人教A版

ID:44866664

大小:250.00 KB

页数:9页

时间:2019-10-31

2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)讲义新人教A版_第1页
2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)讲义新人教A版_第2页
2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)讲义新人教A版_第3页
2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)讲义新人教A版_第4页
2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)讲义新人教A版_第5页
资源描述:

《2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)讲义新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.4 函数的应用(一)最新课程标准:在现实问题中,能利用函数构建模型,解决问题.知识点 几类常见函数模型名称解析式条件一次函数模型y=kx+bk≠0反比例函数模型y=+bk≠0二次函数模型一般式:y=ax2+bx+c顶点式:y=a2+a≠0幂函数模型y=axn+ba≠0,n≠1 建立函数模型解决实际问题的基本思路[教材解难] 建立函数模型应把握的三个关口(1)事理关:通过阅读、理解,明白问题讲什么,熟悉实际背景,为解题打开突破口.(2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系.(3)数理关:在构建数学模型的过程中

2、,利用已有的数学知识进行检验,从而认定或构建相应的数学问题.[基础自测]1.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为(  )A.200副        B.400副C.600副D.800副解析:利润z=10x-y=10x-(5x+4000)≥0.解得x≥800.答案:D2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是(  )解析:距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是

3、直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.答案:C3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为(  )A.45.606万元B.45.6万元C.45.56万元D.45.51万元解析:依题意可设甲销售x辆,则乙销售(15-x)辆,总利润S=L1+L2,则总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15(x-10.2)2+0.15×10.

4、22+30(0≤x≤15且x∈N),所以当x=10时,Smax=45.6(万元).答案:B4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为________.解析:令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不合题意.故拟录用人数为25人.答案:25题型一 一次、二次函数模型[经典例题]例1 某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100

5、个.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价定为多少元时,才能使每天所赚的利润最大?并求出最大值.【解析】 设每个提价x元(x≥0,x∈N),利润为y元.每天销售总额为(10+x)(100-10x)元,进货总额=8(100-10x)元,显然100-10x>0,即x<10,则y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).当x=4时,y取得最大值,此时销售单价应为14元,最大利润为360元.答

6、:当售价定为14元时,可使每天所赚的利润最大,最大利润为360元.可根据实际问题建立二次函数模型解析式.方法归纳1.利用一次函数模型解决实际问题时,需注意以下两点:(1)待定系数法是求一次函数解析式的常用方法.(2)当一次项系数为正时,一次函数为增函数;当一次项系数为负时,一次函数为减函数.2.二次函数模型主要用来解决实际问题中的利润最大、用料最省等问题,是高考考查的重点.解题时,建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等来求函数的最值,从而解决实际问题.跟踪训练1 某列火车从北京西站开往石家庄,全程277km.火车出

7、发10min开出13km,之后以120km/h的速度匀速行驶.试写出火车行驶的总路程s与匀速行驶的时间t之间的函数关系式,并求离开北京2h时火车行驶的路程.解析:因为火车匀速行驶的总时间为(277-13)÷120=(h),所以0≤t≤.因为火车匀速行驶th所行驶的路程为120tkm,所以火车行驶的总路程s与匀速行驶的时间t之间的函数关系式为s=13+120t.离开北京2h时火车匀速行驶的时间为2-=(h),此时火车行驶的路程s=13+120×=233(km).求出火车匀速行驶的总时间,可得定义域,再建立总路程关于时间的函数模型.题型二 分段函数[

8、教材P94例2]例2 一辆汽车在某段路程中行驶的平均速率v(单位:km/h)与时间t(单位:h)的关系如图所示,(1)求图中阴影部分的面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。