资源描述:
《2019_2020学年高中数学第三章函数的概念与性质3.4函数的应用(一)课后篇巩固提升(含解析)新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.4 函数的应用(一)课后篇巩固提升基础巩固1.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是( ) A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点解析由题图知甲所用时间短,∴甲先到达终点.答案D2.用长度为24m的材料围成一个矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A.3mB.4mC.5mD.6m解析设隔墙长为xm,则矩形场地长为24-4x2=(12-2x)m.所以矩形面积为S=x(12-2x)=-2x2+1
2、2x=-2(x-3)2+18,即当x=3m时,矩形面积最大.答案A3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( )A.升高7.84%B.降低7.84%C.降低9.5%D.不增不减解析设该商品原价为a,四年后的价格为a(1+0.2)2·(1-0.2)2=0.9216a.∴(1-0.9216)a=0.0784a=7.84%a,即比原来降低7.84%.答案B4.某工厂生产某产品x吨所需费用为P元,而卖出x吨的价格为每吨Q元,已知P=1000+5x+110x2,Q=a+xb,若生产出的
3、产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( )A.a=45,b=-30B.a=30,b=-45C.a=-30,b=45D.a=-45,b=-30解析设生产x吨产品全部卖出所获利润为y元,则y=xQ-P=xa+xb-1000+5x+110x2=1b-110x2+(a-5)x-1000,其中x∈(0,+∞).由题意知当x=150时,y取最大值,此时Q=40.∴-a-521b-110=150,a+150b=40,整理得a=35-300b,a=40-150b,解得a=45,b=-30.答案A5.某汽车在同一
4、时间内速度v(单位:km/h)与耗油量Q(单位:L)之间有近似的函数关系Q=0.0025v2-0.175v+4.27,则车速为 km/h时,汽车的耗油量最少. 解析Q=0.0025v2-0.175v+4.27=0.0025(v2-70v)+4.27=0.0025[(v-35)2-352]+4.27=0.0025(v-35)2+1.2075.故v=35km/h时,耗油量最少.答案356.一个水池有2个进水口,1个出水口.2个进水口的进水速度分别如图甲、乙所示,出水口的排水速度如图丙所示.某天0时到6时,该水池的蓄水量如图丁所示.
5、给出以下3个论断:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到6时不进水不出水.其中,一定正确的论断序号是 . 解析从0时到3时,2个进水口的进水量为9,故①正确;由排水速度知②正确;4时到6时可以是不进水,不出水,也可以是开1个进水口(速度快的)、1个排水口,故③不正确.答案①②7.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R与管道半径r的四次方成正比.(1)写出函数解析式;(2)假设气体在半径为3cm的管道中的流量速率为400cm3/s,求该气体通过半径为rcm的管道时,其流量速率R
6、的解析式;(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率.解(1)由题意,得R=kr4(k是大于0的常数).(2)由r=3cm,R=400cm3/s,得k·34=400,解得k=40081,所以函数解析式为R=40081r4.(3)因为R=40081r4,所以当r=5cm时,R=40081×54≈3086(cm3/s),即该气体的流量速率约为3086cm3/s.8.如图所示,已知边长为8m的正方形钢板有一个角被锈蚀,其中AE=4m,CD=6m.为了合理利用这块钢板,将在五边形ABCDE内截取一个矩形块BNPM,使
7、点P在边DE上.(1)设MP=xm,PN=ym,将y表示成x的函数,求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.解(1)如图所示,延长NP交AF于点Q,则PQ=8-y,EQ=x-4.在△EDF中,EQPQ=EFFD,∴x-48-y=42.∴y=-12x+10,定义域为[4,8].(2)设矩形BNPM的面积为S,则S=xy=x10-x2=-12(x-10)2+50.又x∈[4,8],所以当x=8时,S取最大值48.所以当MP=8m时,矩形BNPM的面积取得最大值,且为48m2.能力提升1.如图,点P在边长为1的正方形边上
8、运动,设M是CD的中点,则当P沿A-B-C-M运动时,点P经过的路程x与△APM的面积y之间的函数y=f(x)的图象大致是( )解析依题意,当0