2020版高考数学一轮复习课后限时集训65不等式选讲不等式选讲理新人教版

2020版高考数学一轮复习课后限时集训65不等式选讲不等式选讲理新人教版

ID:44749009

大小:30.23 KB

页数:4页

时间:2019-10-27

2020版高考数学一轮复习课后限时集训65不等式选讲不等式选讲理新人教版_第1页
2020版高考数学一轮复习课后限时集训65不等式选讲不等式选讲理新人教版_第2页
2020版高考数学一轮复习课后限时集训65不等式选讲不等式选讲理新人教版_第3页
2020版高考数学一轮复习课后限时集训65不等式选讲不等式选讲理新人教版_第4页
资源描述:

《2020版高考数学一轮复习课后限时集训65不等式选讲不等式选讲理新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课后限时集训(六十五) 不等式选讲(建议用时:60分钟)A组 基础达标1.(2018·全国卷Ⅱ)设函数f(x)=5-

2、x+a

3、-

4、x-2

5、.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.[解] (1)当a=1时,f(x)=可得f(x)≥0的解集为{x

6、-2≤x≤3}.(2)f(x)≤1等价于

7、x+a

8、+

9、x-2

10、≥4.而

11、x+a

12、+

13、x-2

14、≥

15、a+2

16、,且当x=2时等号成立.故f(x)≤1等价于

17、a+2

18、≥4.由

19、a+2

20、≥4可得a≤-6或a≥2.所以a的取值范围是(-∞,-6]∪[2,+∞).2.设函数f(x)=

21、2x+1

22、

23、-

24、x-2

25、.(1)解不等式f(x)>1;(2)若存在x∈,使不等式a2-3a>f(x)成立,求实数a的取值范围.[解] (1)∵f(x)=

26、2x+1

27、-

28、x-2

29、,∴f(x)=则f(x)>1⇔或或解得x<-4或<x≤2或x>2.综上,不等式f(x)>1的解集为(-∞,-4)∪.(2)存在x∈,使不等式a2-3a>f(x)成立⇔a2-3a>f(x)min,x∈,由(1)知,x∈时,f(x)=3x-1,∴当x=-时,f(x)取得最小值,且f(x)min=-,则a2-3a>-,解得a<1或a>5,∴实数a的取值范围为(-∞,1)∪(5,+∞).3.已知a,b,c∈R

30、,且2a+2b+c=8,求(a-1)2+(b+2)2+(c-3)2的最小值.[解] 由柯西不等式得(4+4+1)×[(a-1)2+(b+2)2+(c-3)2]≥[2(a-1)+2(b+2)+c-3]2,∴9[(a-1)2+(b+2)2+(c-3)2]≥(2a+2b+c-1)2.∵2a+2b+c=8,∴(a-1)2+(b+2)2+(c-3)2≥,当且仅当==c-3时等号成立,∴(a-1)2+(b+2)2+(c-3)2的最小值是.4.(2019·长春质检)已知a>0,b>0,a+b=2.(1)求证:a2+b2≥2;(2)求证:≥1+.[解] (1)根据重要不等式得:a

31、2+b2≥(a+b)2=2.(2)+=×=++≥+=,等号成立的条件为:=,故≥1+.5.已知函数f(x)=g(x)=af(x)-

32、x-1

33、.(1)当a=0时,若g(x)≤

34、x-2

35、+b对任意x∈(0,+∞)恒成立,求实数b的取值范围;(2)当a=1时,求g(x)的最大值;[解] (1)当a=0时,g(x)=-

36、x-1

37、,∴-

38、x-1

39、≤

40、x-2

41、+b⇒-b≤

42、x-1

43、+

44、x-2

45、.∵

46、x-1

47、+

48、x-2

49、≥

50、x-1+2-x

51、=1,∴-b≤1,∴b≥-1.(2)当a=1时,g(x)=可知g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴g(x)max=g

52、(1)=1.B组 能力提升1.(2017·全国卷Ⅰ)已知函数f(x)=-x2+ax+4,g(x)=

53、x+1

54、+

55、x-1

56、.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.[解] (1)当a=1时,不等式f(x)≥g(x)等价于x2-x+

57、x+1

58、+

59、x-1

60、-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤.所以f(x)≥g(x)的解集为.(2)当x∈[-1,1]时,g

61、(x)=2,所以f(x)≥g(x)的解集包含[-1,1]等价于当x∈[-1,1]时,f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].2.已知a,b∈(0,+∞),a+b=1,x1,x2∈(0,+∞).(1)求++的最小值;(2)求证:(ax1+bx2)(ax2+bx1)≥x1x2.[解] (1)因为a,b∈(0,+∞),a+b=1,x1,x2∈(0,+∞),所以++≥3·=3·≥3·=3×=6,当且仅当==且a=b,即a=b=,且x1=x2=1时,++有最

62、小值6.(2)证明:法一:由a,b∈(0,+∞),a+b=1,x1,x2∈(0,+∞),及柯西不等式可得:(ax1+bx2)(ax2+bx1)=[()2+()2]·[()2+()2]≥(·+·)2=(a+b)2=x1x2,当且仅当=,即x1=x2时取得等号.所以(ax1+bx2)(ax2+bx1)≥x1x2.法二:因为a,b∈(0,+∞),a+b=1,x1,x2∈(0,+∞),所以(ax1+bx2)(ax2+bx1)=a2x1x2+abx+abx+b2x1x2=x1x2(a2+b2)+ab(x+x)≥x1x2(a2+b2)+ab(2x1x2)=x1x2(a2+b2

63、+2ab)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。