资源描述:
《小升初数学衔接课第二部分-规律探索2》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、小升初数学衔接课第二部分规律探索第四次课图形规律例1・按如下方式摆放餐桌和椅子:宴子张数123斗n可6810填表中缺少可坐人数;.解答:结合图形和表格,不难发现:1张桌子座6人,多一张桌子多2人.4张桌子可以座10+2二12.即n张桌子时,共座6+2(n-1)=2n+4.对应练习:观察表中三角形个数的变化规律:图形横截线条数012•••n三角形个数6?■?■•••?■若三角形的横截线有0条,则三角形的个数是6;你能填写以上表格吗?若三角形的横截线有n条,则三角形的个数是(用含n的代数式表示).解答:表格的答案是12,18o当横截线有n条时,在6个的基础上多了
2、n个6,即三角形的个数共有6+6n二6(n+1)个.故应填6(n+1)或6n+6图形找规彳暢1页共8页例2.以下各图分别由一些边长为1的小正方形组成,请填写图2、图3屮的周长,并以此推断出图10的周2为;第门图的周长为.周长=4周长=解答:・・•小正方形的边长是1,・••图1的周长是:1X4=4,图2的周长是:2X4=8,图3的周长是3X4=12,・••图10的周长是10X4=40;第n个图的周长是4n.故答案为:8,12,40,4n.对应练习:如图,是用相同的等腰梯形拼成的等腰梯形图案.笫(1)个图案只有1个等腰梯形,其两腰之和为4,上下底之和为3,周长为
3、7;第(2)个图案由3个等腰梯形拼成,其周长为13;…第(n)个图案由(2n-l)个等腰梯形拼成,其周长为.(用正整数n表示)(1)(2)(3)(n)解答:根据题意得:第(1)个图案只有1个等腰梯形,周长为3X1+4二7;第(2)个图案由3个等腰梯形拼成,其周长为3X3+4二13;笫(3)个图案由5个等腰梯形拼成,其周长为3X5+4二19;•••第(n)个图案由(2n-l)个等腰梯形拼成,其周长为3(2n-1)+4二6n+l;故答案为:6n+l例3:如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规
4、律,画10个不同点,可得线段条.ACBACDBACDEB解答:・・•画1个点,可得3条线段,1+2二3;iffll2个点,可得6条线段,1+2+3二6;画3个点,可得10条线段,1+2+3+4=10;••••9画n个点,则可得(l+2+3+・・・+n+n+l)二(川1)(川2)条线段.2所以画10个点,可得11X12=66条线段;210个交点对应练习:如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有个交点;二十条直线相交最多有个交点;n条直线最多有个交点。1个交点3个交点
5、6个交点解答:2条直线两两相交,最多有1个交点;3条直线两两相交,最多有1+2=3个交点;4条直线两两相交,最多有1+2+3二6个交点;5条直线两两相交,最多有1+2+3+4=10个交点;6条直线两两相交,最多有1+2+3+4+5=15个交点;依次类推,20条直线两两相交,最多有1+2+3+4+…+19=190个交点.n条直线两两相交,最二呼个交点.故答案为:15,190,5小“个单位正方形;例4:下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有第n个图形中有个单位正方形.□□第1个第二个解答:根据图形分析可得:第1个图案中正方形的个数是
6、2X1=2个;第2个图案中正方形的个数是2X(1+2)二6个;第3个图案中正方形的个数是2X(1+2+3)二12个••••9依照图中规律,笫六个图形中有2X(1+2+3+4+5+6)二42个单位正方形;笫n个图形屮有2X(1+2+3+4+5+6+n)=2x=(n+1)n个单位正方形.2对应练习:如图,用相同的火柴棒拼三角形,依此拼图规律,第7个图形中共有根火柴棒;第n个图形屮共有根火柴棒.△第一个图案第二个图案第三个图案解答:根据图形分析可得:第1个图案中正方形的个数是3X1=3个;第2个图案中正方形的个数是3X(1+2)二9个;第3个图案中正方形的个数是3
7、X(1+2+3)=18个依照图中规律,第7个图形中有3X(1+2+3+4+5+6+7)二84个单位正方形;第n个图形中有3X(l+2+3+4+5+6+n)小(n+1)n=3x个单位正方形.作业:1.如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>l)盆花,每个图案中花盆的总数为S.问:①当每条边有2盆花时,花盆的总数S是多少?②当每条边有3盆花时,花盆的总数S是多少?③当每条边有4盆花时,花盆的总数S是多少?④当每条边有10盆花吋,花盆的总数S是多少?OOOOOoooo⑤按此规律推断,当每条边有n盆花时,花盆的总数S是多少?O°
8、OOOOOOO解答:依题意得:①n二2,S二3二3X