欢迎来到天天文库
浏览记录
ID:44589290
大小:313.60 KB
页数:16页
时间:2019-10-23
《【精品】人口预测论文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、人口增长预测数学实验指导教师:何仁斌城市建设与环境工程学院环境工程1班姓名:郑惋月学号:20096545人口增长预测摘要:人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提。木文主要介绍了两个最基本的人口模型,即人口指数增长模型和阻滞増长模型,并利用美国1790年至1980年人口统计数据,对模型做出检验,最后用它预测2010年美国人口。模型一:建立了指数增长模型,根据规律建立模型公式一一年增长率r不变。我们要验证该模型是否适用。収题目中给出的数据1790年至1900年的,数据拟
2、合用MATLAB软件计算的增长率I•以及初始人口数。讲以上两参数带入公式,算的人口数量,将之与实际人口数相比较画出对比图形,发现比较相符。乂取1790至2000年的数据,重复刚才步骤。发现算出数据前半部分相符,但后半部分明显增加的比实际数据快。所以,Malthus人口模型只适用于短期,并不适用于长期的人口预测。因为人口在增长到一定程度时,由于资源和环境对人口增长的阻滞作用使增长率下降。模型二:建立了阻滞增长人口阻滞增长模型,利用题H中给出的数据。根据公式做出人口的时间变化率与人口容量的关系图,以及人口与时间的关系图。选择1860年至1
3、990年的数据(去掉个别异常数据),用MATLAB软件计算出增长率和人口容量。根据得到的数据带入公式的到计算的人口数量与实际数据作比较。可以看出这个模型的吻合度相当好,由于阻滞增长人口模型。可以据此模型有效的预测在以后一段时间内如2020的美国人口增长。依次内推也可以利用此模型來预测世界人口在相当一段时间内的人口増长。模型三:对模型进行了进一步的修正。最后,分别对三模型进行优缺点评价与改进。关键字:人口预测;matlab软件;人口指数増长模型;阻滞增长模型目录一、问题重述3二、问题分析3三、模型假设41.模型一42.模型二43.模型三
4、4四、符号说明4[.模型一42.模型二4五、模型的建立55.1指数增长模型55丄1模型建立55.1.2结果分析与模型检验65.2阻滞增长模型75.2.1模型建立75.2.2结果分析与模型检验85.3修改模型105.3.1模型建立105.3.2结果分析与模型检验10六、总结11附录113一、问题重述长期以来,人类的繁衍一直在£1发的进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才开始猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律,以及如进行人口控制等问题。认识人口数量的变化规律,建立人口模型,作出较准确的预报,是有
5、效控制人口增长的前提。二、问题分析人口的变化受到众多方而因素的影响,。人口数量对人类的发展影响也是与口倶增。所以对人口数量的控制和预测也显得尤为重耍。就此我们需要找到更好更精确的人口增长模型来预测人口数量。就此,根据题忖所给的信息,就美国从1790年至2000年的人口増长入手,用指数增长模型的检验人口增长是否相符,预测人口增长。并改进成阻滞增长模型,并用它预测人口增长。1•先用指数增长模型检验人口增长是否相符。曲于经历的时间比较长,所以我们分为长期和短期分别检验。就会发现规律,短期的符合该模型,而长期而言后半期明显计算的增加的比较快。
6、根据这个问题我们找原因。由于资源、环境问题使阻滞增长人口模型人口增加到一定数量时,增长率会减慢。据此改进我们就得到了第二个模型。2.得到第二个模型后先找规律,找关键点。及增长率随时间的变化以及人口容量值。分析人口随时间变化率与人口容量的关系。然后得出人口与时间的关系。最后检验计算值与实际值是否相符,很叨显相符的。所以我们就可以用之预测人口数量了。2.分析两模型的优缺点,适用范围,以便我们更广泛明了的使用。三、模型假设1・模型一人口指数増长模型(马尔萨斯Malthus,1766-1834)1)时刻t人口增长的速率与当时人口数成正比,增长
7、率为常数“2)以P⑴表示时刻t某地区(或国家)的人口数,设人口数P⑴足够人,可以视做连续函数处理,且P⑴关于t连续可微。2•模型二阻滞增长模型(Logistic)1)地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源1/Pm(t);2)在时刻仇人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源5=i-p/r成正比;比例系数表示人口的固有增长率;3)设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微。3•模型三基于模型一和二,对模型进行了进一步的修正。四、符号说明t表示某一时刻;P(t)表示时
8、刻I某地区(或国家)的人口数;1•表示人口增长率为常数。2•模型二t表示某一•时刻;P(t)表示时刻t某地区(或国家)的人口数;P.n⑴表示自然资源和环境条件能容纳的最大人口数量;「为固有增长率,表示人口很少是(理论上是
此文档下载收益归作者所有