整式的乘除与因式分解复习试题

整式的乘除与因式分解复习试题

ID:44512540

大小:78.06 KB

页数:4页

时间:2019-10-22

整式的乘除与因式分解复习试题_第1页
整式的乘除与因式分解复习试题_第2页
整式的乘除与因式分解复习试题_第3页
整式的乘除与因式分解复习试题_第4页
资源描述:

《整式的乘除与因式分解复习试题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、整式的乘除与因式分解知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。如:-2a2be的系数为-2,次数为4,单独的一个非零数的次数是0。2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:a2-2ab+x+1,项有/、一2ab、x>1,二次项为a?、-2ab,—次项为x.常数项为1,各项次数分别为2,2,1,0,系数分别为1,・2,1,1,叫二次四项式。

2、3、整式:单项式和多项式统称整式。注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。4、同底数幕的乘法法则:a,nan=am+n(m,n都是正整数)同底数幕相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:(a+疔(a+b)3=(a+b)5幕的乘方法则:(am)n=amn(m9n都是正整数)幕的乘方,底数不变,指数相乘。女[I:(-35)2=3,0幕的乘方法则可以逆用:即amn=(amY=(an)m如:46=(42)3=(43)26、积的乘方法则:(ab)n=anbfi(〃是正整数)积的乘方,等于各因

3、数乘方的积。如:(-2x3/z)5=(-2)5e(x3)5e(y2)5>Z5=-32x15y,oz57、同底数幕的除法法则:am-^an=am~n(Q,m,n都是正整数,且加i)同底数幕相除,底数不变,指数相减。女0:(ab)4^(ab)=(ab)3=a3b38、零指数和负指数;6/°=1,即任何不等于零的数的零次方等于1。宀二(心0丿是止整数),即一个不等于零的数的+次方等于这个数的a[〃次方的倒数。如:2-3=(£)3=*9、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含

4、有的字母,则连同它的指数作为积的一个因式。注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。②相同字母相乘,运用同底数幕的乘法法则。③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。⑤单项式乘以单项式,结果仍是一个单项式。如:-2/〉七.3兀),=10、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即m(6/+/?+c)=ma+mb+me(m,a,b,c都是单项式)注意:①积是一个多项式,其项数与多项式的项数和同。①运算时要注意

5、积的符号,多项式的每一项都包括它前血的符号。②在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。]如:2x(2x-3y)-3y(x+y)11、多项式与多项式相乘的法则;多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。如:(3°+2b)(ci一3b)(x+5)(x-6)12、平方差公式:(a+b)(a-b)=a2-b2注意平方產公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是和同项的平方减去和反项的平方。如h(x+y-z)(

6、x-y+z)13、完全平方公式:(a±h)2=a2±2肪+h2公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。注意:a2-}-b2=(a+b)2-2ab=(a+b)2-2cib(a-b)2=(d+b)?-4ab(一a—b)2-[-(a+b)]2=(a+b)2(一a+b)2-[-(a-b)]2-(a一b)2完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。14、三项式的完全平方公式:(a+b+c)2=a~+b~+c2lab+2ac+2bc1

7、5、单项式的除法法则:单项式相除,把系数、同底数幕分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幕相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式如:-la2b4m^49a2b16、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:(am+bin+cm)十m=am—m+bm—m+cm十加=d+b+c17、因式分解:常用方法:提公因式法、公式法、配方法、十字相乘法三、知

8、识点分析:1.同底数幕、幕的运算:am.an=am+n(rn,n都是正整数).(t/m)n=^mn(m,n都是IE整数).1、若T~2=64,贝Ija二;若27x3"=(-3)8,贝Un二・2、计算[(兀-?)')']"®-*)*"3、若a2"-3,贝忖"=-2•积的乘方(tzb)n=^nbn(n为正整数)•积的乘方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。