资源描述:
《数学思想渗透途径分析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数学思想渗透途径分析■小学数学论文■教育期刊数学思想渗透途径分析江苏南通市开发区实验小学(226009)召[5莹数学思想是数学教学的基础”而数学方法是在数学思想的前提条件下,为数学教学提供思路方法以及手段进行具体操作的原则。因此数学思想方法是以数学知识为基础的,是数学知识形成过程中的概括和提炼,是对数学规律普遍性的认识。下面我就谈谈自己在平时的数学课中是怎样进行数学基本思想渗透的。在课堂上渗透数学极限思想方法过程中应强调反复性在小学数学课堂教学中进行数学基本思想方法的渗透,具体表现在教师要从思想上不断提高认识,对渗透数学思想方法重要性要有足够的重视,把掌握数学
2、知识与渗透数学思想方法放在同样重要的位置。比如,《庄子》中有〃一尺之極,日取一半,万世不竭〃的说法,就是〃有一根一尺长的棒,第一天取一半,第二天取剩下的一半的一半,如此下去,这一根棒永远取之不尽〃,这就是极限思想。在小学数学中,也存在着许多极限思想。如最大的自然数z最小的小数等,若能将极限思想扩展到学生生活以及学习中,才是真正达到极限思想的实质。也就是说,数学思想的渗透是随着学生已有知识经验的积累、能力的提高逐步加深的。学生对数学思想方法领会和掌握有一个〃从感性到理性z从具体到抽象〃的认知过程,在反复渗透中才能增进理解。学生对转化思想的领会就需要一个较长的反复
3、认识过程。如学生在刚学〃小数乘整数〃时,让学生看到自然数0、1、2、3……是〃数不完〃的,通过认数初步体验到自然数有〃无限多个〃;教学梯形面积计算公式之后z让梯形的上底无限接近于0,得到三角形的面积计算公式;等等。同时在进行具体教学时,教师应放慢脚步,使学生在充分地列举、不断地体验中,感悟〃无限多、无限逼近〃的思想。让学生多次经历在有限的时空里去领略〃无限〃的含义,最终达到对极限思想的理解。如教学〃圆的认识〃时,我在学生画了几条对称轴后,问:〃这样的对称轴能画完吗?”有的说这么小的圆应该画得完吧,有的说画不完。这时再让他们观察课件演示的画面,从而确信了〃圆有无
4、数条对称轴〃。数学极限思想方法有更大的抽象性和概括性,只有在教学过程中反复地渗透,才能收到较好的效果。二、通过统计表和统计图的教学进行统计思想的渗透数学统计的思想是人类数学思想文化宝库中的重要部分,对数学教育有宏观性的指导作用。所以我们在数学教学过程中要有意识地向学生渗透数学统计思想,这也是一种提高学生数学能力的重要途径,是数学教学实现培养学生分析、解决问题能力的重要手段,能加深学生对数学概念、公式、定理、定律的理解,也是小学数学教学实现素质教育的重要途径。在小学数学中,统计思想主要体现在教材内容的统计表和统计图等知识点,以及简单的数据整理与求平均数这些内容,
5、要求学生在会整理数据以及制表和作图的基础上能从数据图和数据表中得出一些科学的数学结论,发现一些具有普遍性的问题。在低中年级让学生初步了解简单的统计思想之后,教师也可在日常的教学过程中渗透统计的思想方法。当然”各种数学思想方法往往是交织在一起的,在小学数学中统计思想的渗透只能是简单的、初步的,在教学过程中教师需要结合具体情况在某一时期中突出•种数学思想。三、通过图形分析数量关系之后进行数形结合思想方法的渗透数和形是数学硏究的两个主要对象,形离不开数,数离不开形:复杂的数量关系,抽象的数学概念,借助图形能使之直观化、形象化、简单化;在解应用题中常常借助线段图的直观
6、性帮助分析数量关系,复杂的形体可以用简单的数量关系例如在小学低年级中,学生刚开始学习数的认识时,都是通过实物进行引入后,再从中学习数字的实际含义。这样从实物至图形,从抽象到数字,整个过程符合低年级小学生的特点,也是数形结合思想的一种渗透。再如〃植树问题〃的数学课,学生很难理解这些字面的意思,而通过画线段图的方式让学生亲眼看到几种不同情况的实际意义,即两头都种,两头都不种,一头种一头不种,等等,就能够让学生在图示的直观作用下很快能理解几种不同情况所代表的不同含义了。可见利用数形结合的思想进行教学,能起到事半功倍的效果。总之,数学思想方法的渗透教学需要通过具体的课
7、堂教学过程才能够实现。教师必须把握好教学的时机和过程,在教学过程中适时地进行数学思想方法的渗透,要注意根据实际情况自然渗透,要有意识地启发学生理解包含在数学知识之中的思想和方法,切忌照抄、挪用、脱离实际等做法。(责编金铃)