二次函数 专题

二次函数 专题

ID:44224253

大小:555.50 KB

页数:8页

时间:2019-10-19

二次函数 专题_第1页
二次函数 专题_第2页
二次函数 专题_第3页
二次函数 专题_第4页
二次函数 专题_第5页
资源描述:

《二次函数 专题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、专题训练(三)与函数有关的最值问题类型之一由不等关系确定的最值问题每吨加工费每吨加工时间成品每吨售价粗加工500元天4000元精加工900元天4500元1.某工厂以每吨3000元的价格购进50吨原料进行加工,两种加工方式如下表:现将这50吨原料全部加工完.(粗加工与精加工不能同时进行)(1)设其中粗加工x吨,共获利y元,求y与x的函数关系式;(不要求写出自变量的取值范围)(2)如果必须在20天内加工完,如何安排生产才能获得最大利润?最大利润是多少?类型之二由一次函数确定的最值问题2.某工厂计划为地震灾区生产A,

2、B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往地震灾区,已知每套A型桌椅的生产成本为100元,运费为2元;每套B型桌椅的生产成本为120元,运费为4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)类型之三由二次函数确定的最值问题3.一个边长为4的正方形截去一个角

3、后成为五边形ABCDE(如图Z-3-1),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.图Z-3-14.[2015·青岛]如图Z-3-2,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=-x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全

4、通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?图Z-3-2类型之四用换元法求最值5.求函数y=x-的最值.类型之五用数形结合法求最值6.函数y=+的最小值是________.类型之六自变量x在某一范围内的最值7.求二次函数y=-4x2+8x-3在-2≤x≤2上的最大值和最小值.8.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2-6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于

5、是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2-6x+7的图象的对称轴为直线x=3,∴由对称性可知,当x=1和x=5时的函数值相等.∴若1≤m<5,则当x=1时,y的最大值为2;若m≥5,则当x=m时,y的最大值为m2-6m+7.请你参考小明的思路,解答下列问题:(1)当-2≤x≤4时,二次函数y=2x2+4x+1的最大值为________;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为______

6、__.图Z-3-3专题训练(五)巧用抛物线的对称性妙解题类型之一利用对称性比较函数值的大小1.点A(-2,y1),B(3,y2)是二次函数y=2(x-1)2-1的图象上的两点,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定2.已知二次函数y=ax2+bx+c(a>0)的图象过点A(1,n),B(3,n),若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=ax2+bx+c(a>0)的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y

7、3<y1<y2D.y1<y3<y2类型之二利用对称性求交点坐标3.如图5-ZT-1,已知抛物线y=x2+bx+c的对称轴为直线x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()图5-ZT-1A.(2,3)B.(3,2)C.(3,3)D.(4,3)4.如图5-ZT-2,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为()图5-ZT-2A.0B.-1C.1D.25.抛物线y=ax2+bx+c经过点A(-2,7),B(6,7

8、),C(3,-8),求该抛物线上纵坐标为-8的另一点的坐标.类型之三利用对称性求长度6.如图5-ZT-3是一个抛物线形拱桥的示意图,桥的跨度AB为100m,支撑桥的是一些等距的立柱,相邻立柱间的水平距离为10m(不考虑立柱的粗细),其中距点A10m处的立柱FE的高度为3.6m.(1)求正中间的立柱OC的高度;(2)是否存在一根立柱,其高度恰好是OC高度的一半?请说明理由.图5-ZT-3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。