欢迎来到天天文库
浏览记录
ID:43738263
大小:708.00 KB
页数:61页
时间:2019-10-13
《第1章实验数据及模型参数》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第1章实验数据及模型参数拟合方法1.1问题的提出1.2拟合的标准1.3单变量拟合和多变量拟合1.4解矛盾方程组1.5梯度法拟合参数1.6吸附等温曲线回归总目录1.1问题的提出化工设计及化工模拟计算中,有大量的物性参数及各种设备参数。实验测量得到的常常是一组离散数据序列(xi,yi)图1-1所示为“噪声”图1-2所示为无法同时满足某特定的函数图1-1含有噪声的数据图1-2无法同时满足某特定函数的数据序列总目录本章目录1.11.21.31.41.51.61.1问题的提出在化学化工中,许多模型也要利用数据拟合技术,求出最佳的模型和模型参数。如在某一反应工程实验
2、中,我们测得了如表1-1所示的实验数据:表1-1总目录本章目录1.11.21.31.41.51.61.1问题的提出确定在其他条件不变的情况下,转化率y和温度T的具体关系,现拟用两种模型去拟合实验数据,两种模型分别是:(1-2)(1-3)总目录本章目录1.11.21.31.41.51.61.2拟合的标准向量Q与Y之间的误差或距离有以下几种定义方法:(1)用各点误差绝对值的和表示(2)用各点误差按绝对值的最大值表示(3)用各点误差的平方和表示(1-4)(1-5)(1-6)R称为均方误差总目录本章目录1.11.21.31.41.51.61.2拟合的标准由于计算均
3、方误差的最小值的原则容易实现而被广泛采用。按均方误差达到极小构造拟合曲线的方法称为最小二乘法。同时还有许多种其他的方法构造拟合曲线,感兴趣的读者可参阅有关教材。本章主要讲述用最小二乘法构造拟合曲线。总目录本章目录1.11.21.31.41.51.61.2拟合的标准实例实验测得二甲醇(DME)的饱和蒸汽压和温度的关系如下表:序号温度℃蒸气压MPa1-23.70.1012-100.174300.2544100.3595200.4956300.6627400.880表1-2DME饱和蒸气压和温度的关系由表1-2的数据观测可得,DME的饱和蒸汽压和温度有正相关关系
4、。总目录本章目录1.11.21.31.41.51.61.2拟合的标准实例如果以直线拟合p=a+bt,即拟合函数是一条直线。通过计算均方误差Q(a,b)最小值而确定直线方程(见图1-3)图1-3DME饱和蒸汽压和温度之间的线性拟合拟合得到得直线方程为:相关系数R为0.97296,平均绝对偏差SD为0.05065。(1-8)(1-7)总目录本章目录1.11.21.31.41.51.61.2拟合的标准实例如果采用二次拟合,通过计算下述均方误差:拟合得二次方程为:(1-9)(1-10)相关系数为R为0.99972,平均绝对偏差SD为0.0056。具体拟合曲线见图1
5、-4图1-4DME饱和蒸汽压和温度之间的二次拟合总目录本章目录1.11.21.31.41.51.61.2拟合的标准实例比较图1-3和图1-4以及各自的相关系数和平均绝对偏差可知:对于DME饱和蒸汽压和温度之间的关系,在实验温度范围内用二次拟合曲线优于线性拟合。二次拟合曲线具有局限性,由图1-4观察可知,当温度低于-30℃时,饱和压力有升高的趋势,但在拟合的温度范围内,二次拟合的平均绝对偏差又小于一次拟合,故对物性数据进行拟合时,不仅要看在拟合条件下的拟合效果,还必须根据物性的具体性质,判断在拟合条件之外的物性变化趋势,以便使拟合公式在已做实验点数据之外应用
6、。总目录本章目录1.11.21.31.41.51.6总目录本章目录1.11.21.31.41.51.61.3单变量拟合和多变量拟合1.3.1单变量拟合1.3.2多变量的曲线拟合1.3.1单变量拟合线性拟合给定一组数据(xi,yi),i=1,2,…,m,做拟合直线p(x)=a+bx,均方误差为:(1-11)Q(a,b)的极小值需满足:总目录本章目录1.11.21.31.41.51.61.3.1单变量拟合线性拟合整理得到拟合曲线满足的方程:或(1-12)称式(1-12)为拟合曲线的法方程。总目录本章目录1.11.21.31.41.51.61.3.1单变量拟合线
7、性拟合可用消元法或克莱姆方法解出方程:总目录本章目录1.11.21.31.41.51.61.3.1单变量拟合线性拟合实例例1.1:下表为实验测得的某一物性和温度之间的关系数据,表中x为温度数据,y为物性数据。请用线性函数拟合温度和物性之间的关系。x131516212223252930313640y111011121213131214161713x42556062647072100130y142214212124172334总目录本章目录1.11.21.31.41.51.61.3.1单变量拟合线性拟合实例解:设拟合直线,并计算得下表:编号xyxyx21234
8、5…21Σ1315162122…1309561110111212…
此文档下载收益归作者所有