重庆市第八中学暑假高二数学(理)定时训练(8月19日)含答案

重庆市第八中学暑假高二数学(理)定时训练(8月19日)含答案

ID:43574750

大小:185.51 KB

页数:5页

时间:2019-10-11

重庆市第八中学暑假高二数学(理)定时训练(8月19日)含答案_第1页
重庆市第八中学暑假高二数学(理)定时训练(8月19日)含答案_第2页
重庆市第八中学暑假高二数学(理)定时训练(8月19日)含答案_第3页
重庆市第八中学暑假高二数学(理)定时训练(8月19日)含答案_第4页
重庆市第八中学暑假高二数学(理)定时训练(8月19日)含答案_第5页
资源描述:

《重庆市第八中学暑假高二数学(理)定时训练(8月19日)含答案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、8月19日数学定时训练及答案班级:姓名:1•己知函数/(X)=26Zsin69XCOS69X4-2^3cos269X-V3(<7>0,69>0)的最大值为2,且4冗、最小正周期为71.(1)求函数/(兀)的单调递增区间;(2)若/(a)二一,求sill4a+-的值.解:试题解析:(【)/(%)=asin2cox+V3cos2cax=ja2+3+(p),2兀由题意知:f(X)的周期为兀,由——=71,知60=2分2coTT/.f(x)=2sin(2x+—)由/(兀)最大值为2,故加+3=2,又6/>0,.a=4分一彳+2乃r52x+彳5彳+23,/

2、(兀)单调递增・・・函数/(对的单调递增区间为竺+M,兰+M1212keZ47T47T2(II)由f(a)=—知2sin(2a+-)=-,即sin(2a+—)=—,爲+2「/712a+—nsin=sin2=-cos2<6丿L<3j~2_L3丿10分-l+2sin2=-l+2xI3丿312分2.重庆八中大学城校区与本部校区之间的驾车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟)25303540频数(次)20304010(1)求T的分布列与数学期望E(T);(2)张老师驾车从大学城校区出发,前往木部校区做一个

3、50分钟的讲座,结束后立即返冋大学城校区,求张老师从离开大学城校区到返冋大学城校区共用时间不超过120分钟的概率.解:(1)以频率估计概率得T的分布列为T25303540p0.20.30.40.1所以£7=25x0.2+30x0.34-35x0.44-40x0.1=32(分钟).(2)设7],可分别表示往返所需时间,设事件A表示“从离开大学城校区到返回大学城校区共用吋间不超过120分钟”,则P(A)=P(T}=25)P(7;ift5)+P(T}=30)P(7;40)+P(7;=35)P®麴5)+P(7;=40)P@30)=0.2x1+0.3x1+04x0

4、.9+0.1x0.5=0.91.3.如图,在儿何体ABCDE+,四边形ABCD是矩形,AB丄平面BEC,BE丄EC,AB=BE=EC=2,G,F分别是线段BE,CD的中点.(1)求证:GF//平面ADE;(2)求平ihiAEF与平面BEC所成锐二面角的余弦值.解:(1)取AE的中点H,连接HG,HD,又G是BE的中点,所以GH//AB,MGH=-AB,又F是CD屮点,2所以DF」CD,由四边形ABCD是矩形得,AB//CD,AB=CD,所以2GH//DF,且GH=DF.从而四边形HGFD是平行四边形,所以GF//DH,又DH趟平面ADE,GF平面ADE,

5、所以GF//平面ADE.(2)如图,在平面BEG内,过点B作BQ//EC,因为BEACE,所以BQABE又因为AB"平面BEC,所以ABaBE,AB八BQ,以B为原点,分别以丽,而,丽的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,贝ljA(0Q2),B(0Q0),E(2Q0),F(2,2,l),因为AB^平面BEC,所以BA=(0,0,2)为平面BEC的法向量,设齐二(X,y,z)为平面AEF的法向量.又AE=(2,0,・2),AF=(2,2,-1)=0,i2x-2z=0,2x+2y-z=0,I")辭千希士=

6、2所以平面AEF与平而BEC所成锐二面

7、角的余弦值为一・34•如图,设C为线段AB的中点,BCDE是以BC为一边的正•方形,以B为圆心BD为5分半径的圆与AB及其延长线交于点H及K.(I)求证:HCCK=B&;(II)若圆B半径为2,求AHAK的值.【解答】(I)证明:连结37、DK,由为圆B直径,所以ZHDK=90°在.RtAHDK中,CD丄HK,故RtDHCsRtKDC2分•••僅=籌,故DC2=HC・CK,又DC=BC,:.BC2=HCCKHCDC(II)连结AD.则AC=CD=BC,/.AD丄BD,……7分/.AD为圆B的切线,・•・AD?=AH•HK,……9分又•••AD=BD=

8、2,•••AHHK=410分(r为参数).5.在极坐标系中,圆C的圆心坐标为半径为2.以极点为原点,极轴为兀的正半轴,取相同的长度单位建•立平面直角地标系,直线/的参数方程为(I)求圆C的极坐标方程(II)设/与圆C的交点为A,B,/与兀轴的交点为P,求【解答】(I)法一:在直角坐标系中,以C(2,

9、),2为半径的圆方程为(x-1)^+(}■-V3)2=4,即x2+y2-2x-2/3y=0……2分化为极坐标方程得:/?2-2/7cos-2f3psin&=0,即p=4sin(&+纟)5分法二:在圆C上任取一点P(p,8),在APCO(其中0为极点),P

10、O=p,C0=2,

11、PC

12、=2,ZPOC=&-手……2分由余弦定理得4=p

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。