样条插值的算例

样条插值的算例

ID:43521560

大小:187.00 KB

页数:18页

时间:2019-10-09

样条插值的算例_第1页
样条插值的算例_第2页
样条插值的算例_第3页
样条插值的算例_第4页
样条插值的算例_第5页
资源描述:

《样条插值的算例》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、样条插值的算例三次样条的概念用一阶导数表示的样条三次样条的极性《数值分析》16引例.sinx在区间[0,]上的插值逼近1.二次插值2.两点埃尔米特插值3.分段埃尔米特插值x0/2Sinx010Cosx10–1x0Sinx00Cosx1–12/18x=-5:5;y=1./(1+x.^2);plot(x,y,x,y,'o')x=-5:5;y=1./(1+x.^2);xi=-5:.05:5;yi=spline(x,y,xi);plot(xi,yi,'b',x,y,'ro')被插值函数:-5≤x≤53/18x=[0,0.0155,0.1485,0.3493,0.6480,1.054

2、7,2.0];y=[0,0.1242,0.3654,0.4975,0.5472,0.4781,0];n=length(x);t=0:n-1;tt=0:.25:n-1;xx=spline(t,x,tt);yy=spline(t,y,tt);plot(xx,yy,x,y,'o')4/18定义5.4给定区间[a,b]上的一个分划:a=x0

3、18当x∈[xj,xj+1](j=0,1,…n-1)时Sj(x)=aj+bjx+cjx2+djx3插值条件:S(xj)=yj(j=0,1,···,n)连续性条件:S(xj+0)=S(xj-0)(j=1,···,n-1)S’(xj+0)=S’(xj-0)(j=1,···,n-1)S”(xj+0)=S”(xj-0)(j=1,···,n-1)由样条定义,可建立方程(4n-2)个!!n个三次多项式,待定系数共4n个!!方程数少于未知数个数??6/18(1)自然边界条件:S”(x0)=0,S”(xn)=0例5.7已知f(–1)=1,f(0)=0,f(1)=1.求[–1,1]上的三次自然样条(

4、满足自然边界条件).解设则有:–a1+b1–c1+d1=1,d1=0,a2+b2+c2+d2=1d1=d2,c1=c2,b1=b2(2)周期边界条件:S’(x0)=S’(xn),S”(x0)=S”(xn)(3)固定边界条件:S’(x0)=f’(x0),S’(xn)=f’(xn)7/18由自然边界条件:–6a1+2b1=0,6a2+2b2=0解方程组,得a1=-a2=1/2,b1=b2=3/2,c1=c2=d1=d2=0问题的解x=[-1,0,1];y=[1,0,1];f1=inline('0.5*x.^3+1.5*x.^2');f2=inline('-0.5*x.^3+1.5*x.

5、^2');t1=-1:.1:0;t2=0:.1:1;p1=f1(t1);p2=f2(t2);plot(x,y,'o',[t1,t2],[p1,p2],’r’)Holdon,plot([t1,t2],[t1,t2].^2)y=x28/18用分段Hermite两点插值推导样条已知函数表xx0x1······xnf(x)y0y1······yn设f(x)在各插值节点xj处的一阶导数为mj取xj+1–xj=h,(j=0,1,2,···,n).当x∈[xj,xj+1]时,分段Hermite插值9/18由S”(x)连续,有等式:S”(xj+0)=S”(xj–0)考虑S”(x)在区间[xj,xj

6、+1]和[xj-1,xj]上表达式.当x∈[xj,xj+1]时,S(x)由基函数组合而成10/1811/18同理,有联立两式,得(J=1,2,······,n-1)自然边界条件:S”(x0)=0,S”(xn)=012/18例5.7已知函数表x–101f(x)101m0=-3/2m1=0m2=3/2x–101H(x)101H’(x)-3/203/2求[–1,1]上的三次自然样条(满足自然边界条件).13/18x∈[-1,0]x∈[0,1]第1个小区间曲率计算公式第2个小区间14/18样条插值函数的极性设f(x)∈C2[a,b],对于a=x0

7、=0,1,···,n).S(x)是满足S(xj)=yj(j=0,1,···,n)的三次自然样条.则有

8、

9、S”(x)

10、

11、≤

12、

13、f”(x)

14、

15、证明:15/18所以即样条函数S(x)在[a,b]上的总曲率最小.16/18一维插值:yi=interp1(x,y,xi,‘method’)methodnearest最近点插值linear线性插值spline样条插值cubic立方插值x=0:10;y=sin(x);xi=0:.25:10;yi=interp1(x,y,xi);plo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。