2018-2019学年高中数学 第一章 空间几何体 测评B(含解析)新人教A版必修2

2018-2019学年高中数学 第一章 空间几何体 测评B(含解析)新人教A版必修2

ID:43520210

大小:2.97 MB

页数:10页

时间:2019-10-09

2018-2019学年高中数学 第一章 空间几何体 测评B(含解析)新人教A版必修2_第1页
2018-2019学年高中数学 第一章 空间几何体 测评B(含解析)新人教A版必修2_第2页
2018-2019学年高中数学 第一章 空间几何体 测评B(含解析)新人教A版必修2_第3页
2018-2019学年高中数学 第一章 空间几何体 测评B(含解析)新人教A版必修2_第4页
2018-2019学年高中数学 第一章 空间几何体 测评B(含解析)新人教A版必修2_第5页
资源描述:

《2018-2019学年高中数学 第一章 空间几何体 测评B(含解析)新人教A版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章测评B(高考体验卷)(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是(  )                A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由所给三视图可知该几何体是一个三棱柱(如图).答案:B2.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于(  )A.2πB.πC.2D.1解析:根据题意,

2、可得圆柱侧面展开图为矩形,长为2π×1=2π,宽为1,∴S=2π×1=2π.故选A.答案:A3.某几何体三视图如图所示,则该几何体的体积为(  )-10-A.8-B.8-C.8-πD.8-2π解析:由几何体的三视图可知,原几何体为棱长是2的正方体挖去两个底面半径为1,高为2的圆柱,故该几何体的体积是正方体的体积减去半个圆柱,即V=23-π·12·2=8-π.故选C.答案:C4某几何体的三视图如图所示,则该几何体的体积为(  )A.12B.18C.24D.30解析:由三视图可知,该几何体的直观图如图所示,为直三棱柱AB

3、C-A1B1C1截掉了三棱锥D-A1B1C1,所以其体积V=×3×4×5-×3×4×3=24.答案:C5.某三棱锥的三视图如图所示,则该三棱锥的体积是(  )-10-A.B.C.D.1解析:由俯视图知底面为直角三角形,又由正视图及侧视图知底面两直角边长都是1,且三棱锥的高为2,故V三棱锥=×1×1×2=.答案:B6.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  )A.108cm3B.100cm3C.92cm3D.84cm3解析:由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积

4、是6×3×6-×3×42=100(cm3).故选B.答案:B7.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示,则该四棱锥侧面积和体积分别是(  )A.4,8B.4-10-C.4(+1),D.8,8解析:由正(主)视图数据可知正四棱锥的底面是边长为2的正方形,高也是2,如图:由图可知PO=2,OE=1,所以PE=,所以V=×4×2=,S=4×2×=4.答案:B8.某几何体的三视图如图所示,则该几何体的表面积为(  )A.180B.200C.220D.240解析:由三视图知该几何体是底面为等腰梯形,且

5、侧棱垂直于底面的棱柱,如图所示,S上=2×10=20,S下=8×10=80,S前=S后=10×5=50,S左=S右=(2+8)×4=20,所以S表=S上+S下+S前+S后+S左+S右=240,故选D.答案:D9.一几何体的三视图如下图所示,则该几何体的体积为(  )-10-A.200+9πB.200+18πC.140+9πD.140+18π解析:由三视图可知,该几何体是由一个长方体及长方体上方的一个半圆柱组成.所以体积V=4×10×5+×π·32·2=200+9π.故选A.答案:A10一块石材表示的几何体的三视图如图

6、所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于(  )A.1B.2C.3D.4解析:由三视图可得原石材为如右图所示的直三棱柱A1B1C1-ABC,且AB=8,BC=6,BB1=12.若要得到半径最大的球,则此球与平面A1B1BA,BCC1B1,ACC1A1相切,故此时球的半径与△ABC内切圆半径相等,故半径r==2.故选B.答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)-10-11一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 

7、   . 解析:根据题意得底面正六边形面积为6,设六棱锥的高为h,则V=Sh,∴×6h=2,解得h=1.设侧面高为h',则h2+()2=h'2,∴h'=2.∴正六棱锥的侧面积为6××2×2=12.答案:1212.已知一个正方体的所有顶点在一个球面上.若球的体积为,则正方体的棱长为     . 解析:由题意知V球=πR3=,R=.设正方体的棱长为a,则=2R,a=,所以正方体的棱长为.答案:13.某四棱锥的三视图如图所示,该四棱锥的体积为     . 解析:由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根

8、据体积公式V=×3×3×1=3,故该棱锥的体积为3.答案:314.某几何体的三视图如图所示,则其表面积为     . 解析:由三视图可知该几何体为半径为1的球体的一半,所以表面积为×4π×12+π×12=3π.答案:3π15.已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为     . -10-解析:如图所示

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。