资源描述:
《《数学建模》(章绍辉 著)参考解答》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、习题3参考解答4.某成功人士向学院捐献20万元设立优秀本科生奖学金,学院领导打算将这笔捐款以整存整取一年定期的形式存入银行,第二年一到期就支取,取出一部分作为当年的奖学金,剩下的继续以整存整取一年定期的形式存入银行……请你研究这个问题,并向学院领导写一份报告.解答假设整存整取一年定期的年利率保持不变,记为r,假设一到期就支取,取出b元作为当年的奖学金,剩下的继续以整存整取一年定期的形式存入银行……记捐款存入银行之后第k年一年定期到期日奖学金捐款账户余额为xk万元,x0=20万元,则列式得x(1rx)bk,0,1,2,.kk1其解为kxk(1r)x0brbrk
2、,0,1,2,平衡点为xbr.因为r>0,所以如果x0br,即0brx0,xk就会单调增加趋于无穷大,并且增加得越来越快;如果x0br,即brx0,x就会单调衰减(到零为止),并且减少得越来越快;如果kxbr,即brx,x就会保持不变,即xx.00kk0如果取r=0.025,则b的临界值为rx00.025200.5(万元).进一步,可编程分别计算当b=0.4、0.5、0.6、1以及2万元时账户总额xk的具体变化过程,并绘图.程序:r=0.025;x=[20,20,20,20,20];b=[.4,.5,.6,1,2];n=20;fork=1:nx(k+1,
3、:)=x(k,:).*(1+r)-b;endplot(0:n,x(:,1),'k.',0:n,x(:,2),'kx',...0:n,x(:,3),'k^',0:n,x(:,4),'ks',0:n,x(:,5),'kp')axis([-1,n+1,0,25])legend('每年用0.4万元','每年用0.5万元',...'每年用0.6万元','每年用1万元','每年用2万元',3)title('奖学金捐款账户余额的演变,年利率2.5%')xlabel('第k年'),ylabel('账户余额(万元)')绘得的图形:奖学金捐款账户余额的演变,年利率2.5%25201510账户余额(万元)每
4、年用0.4万元5每年用0.5万元每年用0.6万元每年用1万元每年用2万元002468101214161820第k年(略去给学院领导的报告,该报告要用非数学语言陈述上述分析)5.有一位老人60岁时将养老金10万元以整存零取方式(指本金一次存入,分次支取本金的一种储蓄)存入,从第一个月开始每月支取1000元,银行每月初按月利率0.3%把上月结余额孳生的利息自动存入养老金.请你计算老人多少岁时将把养老金用完?如果想用到80岁,问60岁时应存入多少钱?解答假设月利率保持不变,记为r,记养老金存入银行之后第k月末账户总额为xk元,从第一个月开始每月支取b元.则列式得x(1rx)bk,0,
5、1,2,.kk1解得kxk(1r)x0brbrk,0,1,2,依题意有r=0.003,b=1000,x0=100000.因为r>0,且x0br,所以xk就会单调衰减(到零为止),并且减少得越来越快;若要x0,可以解得只需要klogbrlogbrx0klog1r所以令Klogbrlogbrx0log1r(上取整),则养老金在第K个月恰好用完.把具体数据代入,执行以下程序,算得K=120,即10万养老金恰好10年用:x=100000;r=0.003;b=1000;K=ceil((log(b/r)-log(b
6、/r-x))/log(1+r))也可以用条件循环语句按差分方程迭代计算,直到xk0停止.程序如下:x=100000;r=0.003;b=1000;n=0;whilex(n+1)>0n=n+1;x(n+1)=(1+r).*x(n)-b;endn如果养老金想用到80岁,即x240=0,那么240br11x1709080240.rr1