河北省邢台市2018_2019学年高一数学下学期第三次月考试题(含解析)

河北省邢台市2018_2019学年高一数学下学期第三次月考试题(含解析)

ID:43439951

大小:604.64 KB

页数:14页

时间:2019-10-03

河北省邢台市2018_2019学年高一数学下学期第三次月考试题(含解析)_第1页
河北省邢台市2018_2019学年高一数学下学期第三次月考试题(含解析)_第2页
河北省邢台市2018_2019学年高一数学下学期第三次月考试题(含解析)_第3页
河北省邢台市2018_2019学年高一数学下学期第三次月考试题(含解析)_第4页
河北省邢台市2018_2019学年高一数学下学期第三次月考试题(含解析)_第5页
资源描述:

《河北省邢台市2018_2019学年高一数学下学期第三次月考试题(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、邢台市2018~2019学年高一下学期第三次月考数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.过点,且斜率为2的直线方程是()A.B.C.D.【答案】A【解析】【分析】由直线的点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.2.不等式的解集为()A.B.C.D.【答案】D【解析】【分析】运用一元二次不等式的解法来求解,可以先因式分解,结合图像来求解集.【详解】不等式可以因式分解

2、为,又因为其图像抛物线开口向上,要求大于或等于零的解集,则取两根开外,故不等式的解集为,故选【点睛】本题考查了一元二次不等式的解法,较为简单.3.已知,,直线,若直线过线段的中点,则()A.-5B.5C.-4D.4【答案】B【解析】【分析】根据题意先求出线段的中点,然后代入直线方程求出的值.【详解】因为,,所以线段中点为,因为直线过线段的中点,所以,解得.故选【点睛】本题考查了直线过某一点求解参量的问题,较为简单.4.在中,若,则()A.B.C.D.【答案】C【解析】【分析】运用正弦定理结合题意得到三边的数量关系,再运用余弦

3、定理求出结果【详解】因为,所以.设,则,,由余弦定理可得,故.故选【点睛】本题考查了运用正弦定理、余弦定理求解角度问题,熟练掌握公式并运用公式求解是解题关键,较为基础5.设满足约束条件,则的最小值为()A.3B.4C.5D.10【答案】B【解析】【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得,当取到点时得到最小值,即故选【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法6.若直线被圆截得的弦长为4,则圆的半径为()A.

4、B.2C.D.6【答案】C【解析】【分析】先求出圆心到直线的距离,然后结合弦长公式求出半径.【详解】由题意可得,圆的圆心到直线的距离为,则圆的半径为.故选【点睛】本题考查了直线与圆的位置关系,结合弦长公式求出圆的半径,较为基础.7.在中,角所对的边分别是,若,则的形状一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形【答案】A【解析】【分析】结合已知条件及正弦定理进行化简,求出三角形的形状.【详解】因为,所以,所以,因为,,所以,,所以,即,故是等腰三角形.故选【点睛】本题考查了运用正弦定理求解三角形形状

5、,在运用正弦定理时注意边角之间的互化,需要掌握解题方法.8.已知正项等比数列的前项和为,若,,则()A.4B.8C.16D.32【答案】B【解析】【分析】结合已知条件和等比数列的性质运用先求出公比,然后求出结果.【详解】因为,所以,所以,即,解得(舍去),则.故选【点睛】本题考查了等比数列的性质运用,结合已知条件即可求出结果,较为基础.9.直线:与圆的位置关系为()A.相离B.相切C.相交D.无法确定【答案】C【解析】【分析】求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因

6、为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.10.已知等差数列的前项和为,若,且,则满足的最小正整数的值为()A.27B.28C.29D.30【答案】C【解析】【分析】由已知条件先计算出取值范围,然后运用等差数列的求和公式求出最小值【详解】因为,所以,因为,,所以数列的公差,所以,所以,故要使,.故选【点睛】本题考查了数列的基础性质运用,在求解时要结合题意先求出的取值范围,然后求出结果,需要掌握解题方法1

7、1.某船在小岛的南偏东,相距20千米的处,该船沿东北方向行驶20千米到达处,则此时该船与小岛之间的距离为()A.千米B.千米C.20千米D.千米【答案】D【解析】【分析】结合题意运用余弦定理求出结果.【详解】由题意可得,在中,,,则.故选【点睛】本题考查了运用余弦定理求解实际问题,首先要读懂题目意思,将其转化为解三角形问题,然后运用公式求解.12.已知点,,若圆上存在不同的两点,使得,且,则的取值范围是()A.B.C.D.【答案】A【解析】【分析】结合题意将其转化为圆和圆的位置关系,两圆相交,计算出圆心距,然后求出结果.【详

8、解】依题意可得,以为直径的圆与圆相交,则圆心距,解得.故选【点睛】本题考查了圆与圆的位置关系,在解答过程中要先读懂题目的意思,将其转化为圆与圆的位置关系,本题还需要一定的计算量,属于中档题.二、填空题(将答案填在答题纸上)13.已知直线与,则与之间距离为___.【答案】【解析】【分析】题目

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。