资源描述:
《【测控指导】高二数学人教A版必修3单元训练:第三章 概率测评B含解析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第三章测评B(高考体验卷)(时间:90分钟满分:100分)—、选择题(本大题共1()小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015课标全国I高考)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从123,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.—B「C.—D.—解析:从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为答案:
2、C22.(2015山东高考)在区间[0,2]上随机地取一个数兀则事件“・lWlo-W1”发生的概率为()A.B.C.D.222解析:由・lWlo一W1,得lo~2^1o一Wlo一,所以Wx+W2,所以OWxW.由几20_4何槪型可知,事件发生的槪率为・答案:A3.(2015广东高考)已知5件产品中有2件次品,其余为合格品,现从这5件产品屮任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.1解析:设正品分别为4
3、,金,旳,次品分别为5,血从中任取2件产品,基本事件共有10种,分别为{人必
4、2},{儿人3},“2冷},{旳,5},“』2},{人2,5}"202},“3,5},“3,82},{502},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得=06答案:B4.(2015福建高考)如图,矩形ABCD中,点A在兀轴上,点B的坐标为(1,0),且点C与点D在函数几0=■-'的图象上.若在矩形ABCD内随机収一点,则此点収自阴影部分的概率等于()Dy/A0BXDyA0BXA.解析:B.C.D.如图,设夬兀)与y轴的交点为£则E(0,1).:$(l,0),・:yc=l+l=2.ZC(
5、1,2).又四边形ABCD是矩形,•:Q(22).・:Sdce=x[l-(-2)]xl=.又S韭形=3x2=6,6一4•:由几何概型概率计算公式可得所求概率P二—一•故选B.答案:B1.(2015湖北高考)在区间[0川上随机取两个数兀鼻记pi为事件的概率化为事件.p6、而Rt^OAC的面积S二•曲边形OCMNA,所以〃]<?2•故选B.答案:B1.(2014辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中则质点落在以AB为直径的半圆内的概率是()A._B._C._D._S一2x1一4半恻一■_解析:所求概率为长方形,故选B.答案:B2.(2014湖南高考)在区间卜2,3]上随机选取一个数X,则XW1的概率为()A.B.C.D.解析:由几何概型的概率公式可得P(XW1)J,故选B.答案:B3.(2014湖北高考)随机掷两枚质地均匀的骰子,它们向上的点数
7、Z和不超过5的概率记为°,点数之和大于5的概率记为",点数之和为偶数的概率记为〃3,则()A.pi8、,戊},{甲,丙,丁},{甲,乙,戊},{甲,乙,丁},{甲,乙,丙}・其中含甲或乙的情况有9种,故选D.答案:Dyx2<05.(2014湖北高考)由不等式组・・’确定的平面区域记为0,不等式组■,确定的平面区域记为込,在0中随机取一点,则该点恰好在0内的概率为()A._B._C.D.。[与0的公共区域为阴影部分,面积sm=・S“bc=2「X1XS一2一8由几何概型得该点恰好落在内的概率卩=.故选D.答案:D二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)1.(2015江苏高考
9、)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为•解析:根据条件得4P=或P=1-答案:2.(2015重庆高考)在区间[0,5]上随机地选择一个数p,则方程"+2p兀+3#・2=0有两个负根的概率为•乂尤记3於2->p,1^