无穷限反常积分敛散性及审敛法则(教案)

无穷限反常积分敛散性及审敛法则(教案)

ID:43023956

大小:304.51 KB

页数:5页

时间:2019-09-24

无穷限反常积分敛散性及审敛法则(教案)_第1页
无穷限反常积分敛散性及审敛法则(教案)_第2页
无穷限反常积分敛散性及审敛法则(教案)_第3页
无穷限反常积分敛散性及审敛法则(教案)_第4页
无穷限反常积分敛散性及审敛法则(教案)_第5页
资源描述:

《无穷限反常积分敛散性及审敛法则(教案)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、无穷限反常积分敛散性及审敛法则一、教学目标分析在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。让学生反常积分在一些实际问题中的应运。二、学情/学习者特征分析学生通过对前面课程的学习,对积分已经有了初步的了解。但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。三、学习内容分析1.本节的作用和地位通过对本节的学习来解决

2、一些不属于定积分的问题,这些问题通常是一些实际问题。例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。2.本节主要内容1.无穷限反常积分的定义与计算方法2.无穷限反常积分的性质3.无穷限反常积分的比较审敛法则4.条件收敛与绝对收敛3.重点难点分析教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则;教学难点:无穷限反常积分的比较审敛法则。4.课时要求:2课时四、教学理念 学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。五、教学策略在教学中主要讲清反常积分的定义及其性

3、质,并适时举例讲解,引导学生互动,相互讨论解决问题。六.教学环境网络环境下的多媒体教室与课堂互动。七、教学过程一、无穷限反常积分的定义定义1设函数/定义在无穷区间[)上,且在任何有限区间[]上可积.如果存在极限则称此极限为函数在[)上的无穷限反常积分(简称无穷积分),记作,并称收敛.如果极限不存在,亦称发散.类似地,可定义在(上的无穷积分:对于在()上的无穷积分,它用前面两种无穷积分来定义:其中为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.注:收敛的几何意义是:若在上为非负连续函数,则介于曲线,直线以及轴之间那一块向右无限延伸的阴影区域有面积

4、.例1 讨论无穷积分,,的收敛性.例2讨论下列无穷积分的收敛性:,二、无穷积分的性质由定义知道,无穷积分收敛与否,取决于积分上限函数在时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则.定理11.1无穷积分收敛的充要条件是:任给>0,存在G≥,只要,便有.此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相应性质.性质1若与都收敛,,为任意常数,则也收敛,且.性质2若在任何有限区间[)上可积,且有收敛,则亦必收敛,并有.证:由收敛,根据柯西准则(必要性),任给,存在G≥,当时,总有.利用定积分的绝对值不等式,又有.再由柯西准

5、则(充分性),证得收敛又因,令取极限,立刻得到不等式.当收敛时,称为绝对收敛.性质3指出:绝对收敛的无穷积分,它自身也一定收敛.但是它的逆命题不成立,称收敛而不绝对收敛的无穷积分为条件收敛.性质3若在任何有限区间[]上可积,,则与同敛态(即同时收敛或同时发散),且有=+,性质2相当于定积分的积分区间可加性,由它又可导出收敛的另一充要条件:任给>,存在,当>G时,总有.事实上,这可由结合无穷积分的收敛定义而得.三、比较判别法首先给出无穷积分的绝对收敛判别法.由于关于上限是单调递增的,因此收敛的充要条件是存在上界.根据这一分析,便立即导出下述比较判别法:定理

6、11.2(比较法则)设定义在[)上的两个函数和都在任何有限区间[]上可积,且满足则当收敛时必收敛(或当发散时,必发散).例3讨论的收敛性.解:由于,而为收敛,故为绝对收敛.当选用作为比较对象时,比较判别法有如下两个推论(称为柯西判别法).推论1设定义于[](),且在任何有限区间[]上可积,则有:(i)当,且时,收敛;(ii)当且时,发散.推论2设定义于[),在任何有限区间[]上可积,且.则有:(i)当时,收敛;(ii)当时,发散.推论3若和都在任何[)上可积,,且则有(i)当时,由收敛可推知也收敛;(ii)当时,由发散可推知也发散.四、狄利克雷判别法与阿

7、贝尔判别法这里来介绍两个判别一般无穷积分收敛的判别法.定理11.3(狄利克雷判别法)若在[)上有界,在[上当时单调趋于,则无穷积分收敛.定理11.4(阿贝尔(Abel)判别法)若收敛,在[)上单调有界,则无穷积分收敛.用积分第二中值定理来证明狄利克雷判别法与阿贝尔判别法.例5讨论与的收敛性.解:这里只讨论前一个无穷积分,后者有完全相同的结论.下面分两种情形来讨论:(i)当>1时绝对收敛.这是因为而当>1时收敛,故由比较法则推知收敛.(ii)当时条件收敛.这是因为对任意≥1,有,而当时单调趋于,故由狄利克雷判别法推知工当时总是收敛的.另一方面,由于,其中是

8、收敛的,而是发散的,因此当时该无穷积分不是绝对收敛的.所以它是条件收敛的.例6证

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。