资源描述:
《2020版高考数学第十章算法初步、统计、统计案例第65讲随机抽样课时达标理新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第65讲随机抽样课时达标 一、选择题1.利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是( )A.B.C.D.A 解析因为每个个体被抽到的概率相等,所以每个个体被抽到的概率是=.2.(2019·济南摸底)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学
2、生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.
3、①、③都可能为分层抽样D 解析如果按分层抽样,在一年级抽取108×=4(人),在二、三年级各抽取81×=3(人),则在号码段1,2,…,108中抽取4个号码,在号码段109,…,189中抽取3个号码,在号码段190,191,…,270中抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④都不可能为系统抽样.3.将参加夏令营的600名学生编号为001,002,…,600.采用系
4、统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A.26,16,8B.25,17,8C.25,16,9D.24,17,9B 解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+1
5、2(k-1)≤495得6、=1200双皮靴.5.(2019·重庆八中一模)一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码的个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是( )A.63B.64C.65D.66A 解析由题设知,若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中数字编号依次为60,61,62,63,…,6
7、9,故在第7组中抽取的号码是63.故选A.6.(2019·成都七中模块检测)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为数N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101B.808C.1212D.2012B 解析依题意可知,甲社区驾驶员的人数占总人数的比例为=,因此有=,解得N=808.二、填空题7.一所高校某专业大一
8、、大二、大三、大四年级依次分别有100名,200名,400名,300名学生,学校为了解学生的就业倾向,用分层抽样的方法从该专业这四个年级中共抽取40名学生进行调查,则应在该专业大三年级抽取的学生人数为.解析由题意知,该专业大三年级抽取的学生人数为40×=16.答案168.为了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为.解析由系统抽样的定义知:分段