22.1.3二次函数y=a(x-h)2+k的图象和性质(第3课时)

22.1.3二次函数y=a(x-h)2+k的图象和性质(第3课时)

ID:42988872

大小:1.30 MB

页数:18页

时间:2019-09-27

22.1.3二次函数y=a(x-h)2+k的图象和性质(第3课时)_第1页
22.1.3二次函数y=a(x-h)2+k的图象和性质(第3课时)_第2页
22.1.3二次函数y=a(x-h)2+k的图象和性质(第3课时)_第3页
22.1.3二次函数y=a(x-h)2+k的图象和性质(第3课时)_第4页
22.1.3二次函数y=a(x-h)2+k的图象和性质(第3课时)_第5页
资源描述:

《22.1.3二次函数y=a(x-h)2+k的图象和性质(第3课时)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、22.1.3二次函数y=a(x-h)2+k的图象和性质第二十二章二次函数导入新课讲授新课当堂练习课堂小结第3课时二次函数y=a(x-h)2+k的图象和性质学习目标1.会用描点法画出y=a(x-h)2+k(a≠0)的图象.2.掌握二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用.(重点)3.理解二次函数y=a(x-h)2+k(a≠0)与y=ax2(a≠0)之间的联系.(难点)导入新课复习引入1.说出下列函数图象的开口方向,对称轴,顶点,最值和增减变化情况:(1)y=ax2(2)y=ax2+c(3)y=a(x-h)2yyyyxxxxOOOOyyyyxxxxOOOOyyxxOO2.由y=

2、-x2的图象怎样平移得到y=-x2-3的图象.并说明后者图象的顶点,对称轴,增减性.3.由y=2x2的图象怎样平移得到y=2(x-3)2的图象.并说明后者图象的顶点,对称轴,增减性.向下平移3个单位.y=-x2-3的顶点(0,-3),对称轴是x=0(或y轴),在y轴的左侧y随x的增大而增大,在y轴的右侧,y随x的增大而减小.向右平移3个单位.y=2(x-3)2的顶点(3,0),对称轴是x=3,当x<3时y随x的增大而减小;当x>3时,y随x的增大而增大.讲授新课二次函数y=a(x-h)2+k的图象和性质一例1画出函数的图像.指出它的开口方向、顶点与对称轴.探究归纳…………210-1-2-3-4

3、x解:先列表再描点、连线-5.5-3-1.5-1-1.5-3-5.512345x-1-2-3-4-5-6-7-8-91yO-1-2-3-4-5-10直线x=-1开口方向向下;对称轴是直线x=-1;顶点坐标是(-1,-1)试一试画出函数y=2(x+1)2-2图象,并说出抛物线的开口方向、对称轴、顶点.开口方向向下;对称轴是直线x=-1;顶点坐标是(-1,-2)y=2(x+1)2-2-22xyO-2468-424知识要点二次函数y=a(x-h)2+k的特点a>0时,开口,最点是顶点;a<0时,开口,最点是顶点;对称轴是,顶点坐标是.向上低向下高直线x=h(h,k)向左平移1个单位二次函数y=a(x

4、-h)2+k与y=ax2的关系二12345x-1-2-3-4-5-6-7-8-91yO-1-2-3-4-5-10探究归纳怎样移动抛物线就可以得到抛物线?平移方法1向下平移1个单位12345x-1-2-3-4-5-6-7-8-91yO-1-2-3-4-5-10怎样移动抛物线就可以得到抛物线?平移方法2向左平移1个单位向下平移1个单位知识要点二次函数y=ax2与y=a(x-h)2+k的关系可以看作互相平移得到的.y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k上下平移左右平移上下平移左右平移平移规律简记为:上下平移,括号外上加下减;左右平移,括号内左加右减.二次项系数a不变.例2要

5、修建一个圆形喷水池,在池中心竖直安装一根水管.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?典例精析C(3,0)B(1,3)AxOy123123解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点.因此可设这段抛物线对应的函数是∵这段抛物线经过点(3,0),∴0=a(3-1)2+3.解得:因此抛物线的解析式为:y=a(x-1)2+3(0≤x≤3).当x=0时,y=2.25.答:水管长应为2.25m.34a=-y=(x-1)2+3(0≤x≤3)34-2.请回答抛物线y=4(x-3)2+7由抛物线y=4x

6、2怎样平移得到?答:由抛物线向上平移7个单位再向右平移3个单位得到的.3.如果一条抛物线的形状与形状相同,且顶点坐标是(4,-2),试求这个函数关系式.当堂练习二次函数开口方向对称轴顶点坐标y=2(x+3)2+5向上(1,-2)向下向下(3,7)(2,-6)向上直线x=-3直线x=1直线x=3直线x=2(-3,5)y=-3(x-1)2-2y=4(x-3)2+7y=-5(2-x)2-61.完成下列表格:2.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a;④若(-3,y1),(,y2)是抛物线上两点

7、,则y1>y2.其中正确的是()A.①②③B.①③④C.①②④D.②③④xyO2x=-1B3.求二次函数y=x2-2x-1的顶点坐标、对称轴及其最值.解:y=x2-2x-1=x2-2x+1-1=(x-1)2-2,∴顶点坐标为(1,-2),对称轴是直线x=1.当x=1,时,y最小值=-2.课堂小结一般地,抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.二次函数y=a(x-h)2+k的图象

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。