欢迎来到天天文库
浏览记录
ID:42917113
大小:77.50 KB
页数:5页
时间:2019-09-23
《解直角三角形的应用.4 解直角三角形的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.4解直角三角形的应用第1课时俯角和仰角问题教学目标:【知识与技能】比较熟练地应用解直角三角形的知识解决与仰角、俯角有关的实际问题.【过程与方法】通过学习进一步掌握解直角三角形的方法.【情感态度】培养学生把实际问题转化为数学问题的能力.【教学重点】应用解直角三角形的知识解决与仰角、俯角有关的实际问题.【教学难点】选用恰当的直角三角形,分析解题思路.教学过程:一、情景导入,初步认知海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?
2、你是如何想的?与同伴进行交流.【教学说明】经历探索船是否有触礁危险的过程,进一步体会三角函数在解决实际问题中的应用.二、思考探究,获取新知1.某探险者某天到达如图所示的点A处,他准备估算出离他的目的地——海拔为3500m的山峰顶点B处的水平距离.你能帮他想出一个可行的办法吗?分析:如图,BD表示点B的海拔,AE表示点A的海拔,AC⊥BD,垂足为点C.先测量出海拔AE,再测出仰角∠BAC,然后用锐角三角函数的知识就可以求出A、B之间的水平距离AC.【归纳结论】当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角.2.如图,在离上海东方明珠塔底部10
3、00m的A处,用仪器测得塔顶的仰角为25°,仪器距地面高为1.7m.求上海东方明珠塔的高度.(结果精确到1m)解:在Rt△ABC中,∠BAC=25°,AC=1000m,因此tan25°=BC/AC=BC/1000∴BC=1000×tan25°≈466.3(m),∴上海东方明珠塔的高度(约)为466.3+1.7=468米.【教学说明】利用实际问题承载数学问题,提高了学生的学习兴趣.教师要帮助学生学会把实际问题转化为解直角三角形问题,从而解决问题.三、运用新知,深化理解1.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角α=16°31′,求飞机A到
4、控制点B的距离.(精确到1米)分析:利用正弦可求.解:在Rt△ABC中sinB=AC/AB∴AB=AC/sinB=1200/0.2843≈4221(米)答:飞机A到控制点B的距离约为4221米.2.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m.这栋高楼有多高(结果精确到0.1m)?解析:在Rt△ABD中,α=30°,AD=120.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.解:如图,α=30°,β=60°,AD=120.答:这栋高楼约高277.1m.3.如图,在离树BC12米的A处,用测
5、角仪测得树顶的仰角是30°,测角仪AD高为1.5米,求树高BC.(计算结果可保留根号)分析:本题是一个直角梯形的问题,可以通过过点D作DE⊥BC于E,把求CB的问题转化求BE的长,从而可以在△BDE中利用三角函数.解:过点D作DE⊥BC于E,则四边形DECA是矩形,∴DE=AC=12米.CE=AD=1.5米.在直角△BED中,∠BDE=30°,4.广场上有一个充满氢气的气球P,被广告条拽着悬在空中,甲乙二人分别站在E、F处,他们看气球的仰角分别是30°、45°,E点与F点的高度差AB为1米,水平距离CD为5米,FD的高度为0.5米,请问此气球有多高?(结果保留到0.1米)分析:由于气球的高度
6、为PA+AB+FD,而AB=1米,FD=0.5米,故可设PA=h米,根据题意,列出关于h的方程可求解.解:设AP=h米,∵∠PFB=45°,∴BF=PB=(h+1)米,∴EA=BF+CD=h+1+5=(h+6)米,在Rt△PEA中,PA=AE·tan30°,∴h=(h+6)tan30°,∴气球的高度约为PA+AB+FD=8.2+1+0.5=9.7米.【教学说明】巩固所学知识.要求学生学会把实际问题转化成数学问题;根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业:布置作业:
7、教材“习题4.4”中第2、4、5题.教学反思:本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转化而来的数学问题应选用适当的数学知识加以解决。
此文档下载收益归作者所有