欢迎来到天天文库
浏览记录
ID:42916902
大小:47.73 KB
页数:4页
时间:2019-09-23
《解直角三角形及其应用(一)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题解直角三角形(一) 一、教育目标 1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. 2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. 3、渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点 1.重点:直角三角形的解法. 2.难点:三角函数在解直角三角形中的灵活运用. 三、教学步骤 (一)复习引入 1.在三角形中共有几个元素? 2.直角三角形ABC中,
2、∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成.(2)三边之间关系 a2+b2=c2(勾股定理) (3)锐角之间关系∠A+∠B=90°. 以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)教学过程 1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为
3、什么两个已知元素中必有一条边呢?激发了学生的学习热情. 2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题 例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=,a=,解这个三角形. 解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应
4、让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演. 解∵tanA===∴ ∴ ∴C=2b=例2在Rt△ABC中,∠B=35,b=20,解这个三角形. 引导学生思考分析完成后,让学生独立完成 在学生独立完成之后,选出最好方法,教师板书. 完成之后引导学生小结“已知一边一角,如何解直角三角形?” 答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也
5、比较可靠,防止第一步错导致一错到底注意:例1中的b和例2中的c都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。 4.巩固练习 P91说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯. (四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生
6、完成 abcAB1√√2√√3√b=a•cotA√4√b=a•tanB√5√√6a=b•tanA√√7a=b•cotB√√8a=c•sinAb=c•cosA√√9a=c•cosBb=c•sinB√√10不可求不可求不可求√√注:上表中“√”表示已知。 四、布置作业
此文档下载收益归作者所有